sensorSift
Balancing Utility and Privacy in Sensor Data
Rise of \{Sensors + AI\}

- People expect rich computational experiences to be available in every context

As a result, our world is increasingly visible to intelligent computers
 - Minimal cost of sensors
 - Cheap computational power
 - Advances in machine reasoning
Lack of Balance

- There are many **benefits** of smart-sensor applications
 - *Increased Productivity, Connectivity, and Interactivity*
- However there are also potential **negative** effects
 - *Privacy Risks*
Goals

• Develop a quantitative framework for **balancing** privacy and utility in smart sensing applications.
 – Empower users with privacy guarantees
 – Applications retain functionality

• Evaluate the quality of our framework against state of the art machine inference

• Offer a flexible solution so that the future demands of users/applications can be supported
Usage Model 1

Sensor data releases to smart applications are often **risk carrying**.

Common Practice: Sensor releases all of the raw data to an Application (e.g. MS Kinect)

Sensor :{ 1 sensor data } \(\rightarrow\) App :{ 2 feature extract, 3 classify, 4 logic}
Usage Model 1

Sensor data releases to smart applications are often **risk carrying**

Common Practice: Sensor releases all of the raw data to an Application (e.g. MS Kinect)

Sensor :{ 1 sensor data } → App :{ 2 feature extract, 3 classify, 4 logic}
Usage Model 2

Sensor data releases to smart applications are often **arbitrarily stifling**

Common Practice: Only a predefined set of features is available to an Application (e.g., iOS)

Platform :\{ 1 sensor data , 2 feature extract, 3 classify \} \rightarrow **App** :\{ 4 logic \}
Usage Model 2

Sensor data releases to smart applications are often **arbitrarily stifling**

Common Practice: Only a predefined set of features is available to an Application (e.g., iOS)

Platform: `{1 sensor data, 2 feature extract, 3 classify} → App :{4 logic}`

- **INNOVATION**
- **++ PRIVACY**
Solution

• Users choose what attributes to keep **private**
• Applications can request non-private (**public**) attributes
 – Public attributes can be invented!
Solution

- Users choose what attributes to keep **private**
- Applications can request non-private (**public**) attributes
 - Public attributes can be invented!
- We transform (sift) sensor data to reveal the **public** but hide the **private** attributes

Plat. : {1 sensor data, 2 sift features} → **App** {3 classify, 4 logic}

+ INNOVATION
+ PRIVACY
Evaluation Context

ATTRIBUTES: visually describable characteristics about a face
System Overview

Scenario:

- **USER**: I don’t want apps. to have knowledge about my **race** and **gender**
- **APPLICATION**: Is the user **smiling**?

 > **POLICY**: PRIVATE {race, gender}, PUBLIC {smiling}

System:

1. Generates Sift
2. Verifies Sift
3. Applies Verified Sift
System Overview

Scenario:
- **USER:** I don’t want apps. to have knowledge about my race and gender
- **APPLICATION:** Is the user smiling?

> **POLICY:** PRIVATE {race, gender}, PUBLIC {smiling}

System:
1. Generates Sift
2. Verifies Sift
3. Applies Verified Sift
Generating Sifts

Intuitively, sifting finds the safe region(s) in feature space which are in the public feature set B but not in the private one A.

Feature regions are based on a large database of sensor samples.

$A = $ eyewear (private)
$B = $ gender (public)

SAFE
OVERLAP
(UNSAFE)

gender
eyewear
safe region
Generating Sifts

Intuitively, sifting finds the safe region(s) in feature space which are in the public feature set \(B \) but not in the private one \(A \).

\[A = \text{eyewear (private)} \]
\[B = \text{gender (public)} \]

Safe region(s) may not always exist for certain attribute correlations.
Sifting Details

\[X = \text{Raw Features} \]
\[X' = \text{Sifted Features} \]

\[X_n, n > 100k \]

\[X'_n, n \sim 5 \]

PPLS

Algorithm 1: Privacy Partial Least Squares

1. Set \(j = 0 \) and cross-product \(S_j = X^T Y^+ \)
2. If \(j > 0 \), \(S_j = S_{j-1} - P(P^T P)^{-1} P^T S_{j-1} \)
3. Compute the largest eigenvector \(w_j \):
 \[
 \left[S_j^T S_j - X^T Y^- (Y^-)^T X \right] w_j = \lambda w_j
 \]
4. Compute \(p_j = \frac{X^T X w_j}{w_j^T X^T X w_j} \)
5. If \(j = k \), stop; otherwise let \(P = [p_0, \ldots, p_j] \) and \(j = j + 1 \) and go back to step 2

\[\text{find} \quad \max_w \left[\text{cov}(Xw, Y^+)^2 - \lambda \ast \text{cov}(Xw, Y^-)^2 \right] \]

\(Y^+ = \text{labels of public attribute(s)} \)
\(Y^- = \text{labels of private attribute(s)} \)
Performance Metrics

- A successful sift will have low scores on both **PubLoss** and **PrivLoss**

 - **PubLoss**: Decrease in sifted public attribute classification accuracy relative to the achievable accuracy using raw (unsifted) data.

 - **PrivLoss**: Gain in sifted private attribute classification accuracy relative to chance.

\[
\text{PubLoss} = ML_m(X, Y^+) - ML_m(\text{PM}_{Y^+(X,K)}, Y^+)
\]

\[
\text{PrivLoss} = ML_m(\text{PM}_{Y^+(X,K)}, Y^-) - .5
\]

Classifiers: Linear Support Vector Machine (SVM), Non-Linear SVM, Neural Network, Random Forest, kNearest Neighbors
Dataset & Attributes

PubFig Database ~45,000 face images of 200 celebrities, 72 attributes

Attributes are [binary] labels for visually describable characteristics,

Attribute Clusters
- Wavy Hair
- Arched Eyebrows
- Wearing Lipstick
- Blond Hair
- Youth

Male - **M**, Attractive Female - **AF**, White - **W**,
Youth - **Y**, Smiling - **S**, Frowning - **F**, No Eyewear - **nE**,
Obstructed Forehead - **OF**, No Beard - **nB**, and Outdoors - **O**.
<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>AF</th>
<th>W</th>
<th>Y</th>
<th>S</th>
<th>F</th>
<th>nE</th>
<th>OF</th>
<th>nB</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0</td>
<td>32</td>
<td>13</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>17</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>AF</td>
<td>21</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>W</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Y</td>
<td>17</td>
<td>22</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>S</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>nE</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>OF</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>nB</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

PubLoss

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>AF</th>
<th>W</th>
<th>Y</th>
<th>S</th>
<th>F</th>
<th>nE</th>
<th>OF</th>
<th>nB</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>11</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>AF</td>
<td>9</td>
<td>0</td>
<td>4</td>
<td>14</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>W</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Y</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>S</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>nE</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>OF</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>nB</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>O</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

PrivLoss

Correlation

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>AF</th>
<th>W</th>
<th>Y</th>
<th>S</th>
<th>F</th>
<th>nE</th>
<th>OF</th>
<th>nB</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>-0.68</td>
<td>-0.05</td>
<td>-0.36</td>
<td>-0.19</td>
<td>0.16</td>
<td>-0.19</td>
<td>0.02</td>
<td>-0.72</td>
<td>0.05</td>
</tr>
<tr>
<td>AF</td>
<td>-0.68</td>
<td>1</td>
<td>0.15</td>
<td>0.5</td>
<td>0.19</td>
<td>-0.14</td>
<td>0.33</td>
<td>-0.14</td>
<td>0.65</td>
<td>-0.13</td>
</tr>
<tr>
<td>W</td>
<td>-0.05</td>
<td>0.15</td>
<td>1</td>
<td>-0.05</td>
<td>0.01</td>
<td>-0.03</td>
<td>0.16</td>
<td>-0.14</td>
<td>0.1</td>
<td>-0.03</td>
</tr>
<tr>
<td>Y</td>
<td>-0.36</td>
<td>0.5</td>
<td>-0.05</td>
<td>1</td>
<td>0.18</td>
<td>-0.1</td>
<td>0.22</td>
<td>-0.04</td>
<td>0.41</td>
<td>-0.05</td>
</tr>
<tr>
<td>S</td>
<td>-0.19</td>
<td>0.19</td>
<td>0.01</td>
<td>0.18</td>
<td>1</td>
<td>-0.69</td>
<td>0.11</td>
<td>-0.05</td>
<td>0.24</td>
<td>0.02</td>
</tr>
<tr>
<td>F</td>
<td>0.16</td>
<td>-0.14</td>
<td>-0.03</td>
<td>-0.1</td>
<td>-0.69</td>
<td>1</td>
<td>-0.06</td>
<td>0.05</td>
<td>-0.2</td>
<td>0.04</td>
</tr>
<tr>
<td>nE</td>
<td>-0.19</td>
<td>0.33</td>
<td>0.16</td>
<td>0.22</td>
<td>0.11</td>
<td>-0.06</td>
<td>1</td>
<td>-0.09</td>
<td>0.24</td>
<td>-0.11</td>
</tr>
<tr>
<td>OF</td>
<td>0.02</td>
<td>-0.14</td>
<td>-0.14</td>
<td>-0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>-0.09</td>
<td>1</td>
<td>-0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>nB</td>
<td>-0.72</td>
<td>0.65</td>
<td>0.1</td>
<td>0.41</td>
<td>0.24</td>
<td>-0.2</td>
<td>0.24</td>
<td>-0.04</td>
<td>1</td>
<td>-0.05</td>
</tr>
<tr>
<td>O</td>
<td>-0.05</td>
<td>-0.13</td>
<td>-0.03</td>
<td>-0.05</td>
<td>0.02</td>
<td>0.04</td>
<td>-0.11</td>
<td>0.12</td>
<td>-0.05</td>
<td>1</td>
</tr>
</tbody>
</table>

Overlap

private attribute

- M - Male
- F - Attr. Female
- W - White
- Y - Youth
- S - Smiling
- F - Frowning
- nE - No Eyewear
- OF - Obstr. Forehd.
- nB - No Beard
- O - Outdoors

public attribute
Conclusions

• We proposed a theoretical framework for quantitative balance between utility and privacy though policy based control of sensor data exposure.

• In our analysis we found promising results when we evaluated the PPLS algorithm in the context of automated face understanding.

• The algorithm we introduce is general, as it exploits the statistical properties of the data; and in the future it would be exciting to evaluate SensorSift in other sensor contexts.

• Available as Open Source!

 miro@cs.washington.edu
Thanks!

Liefeng Xiaofeng Jaeyeon Yoshi

SecLab @ UW
Questions?

http://homes.cs.washington.edu/~miro/sensorSift