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ABSTRACT

We introduce SensorSift, a new theoretical scheme for balancing
utility and privacy in smart sensor applications. At the heart of our
contribution is an algorithm which transforms raw sensor data into
a ‘sifted’ representation which minimizes exposure of user defined
private attributes while maximally exposing application-requested
public attributes. We envision multiple applications using the same
platform, and requesting access to public attributes explicitly not
known at the time of the platform creation. Support for future-
defined public attributes, while still preserving the defined privacy
of the private attributes, is a central challenge that we tackle.

To evaluate our approach, we apply SensorSift to the PubFig
dataset of celebrity face images, and study how well we can si-
multaneously hide and reveal various policy combinations of face
attributes using machine classifiers.

We find that as long as the public and private attributes are not
significantly correlated, it is possible to generate a sifting transfor-
mation which reduces private attribute inferences to random guess-
ing while maximally retaining classifier accuracy of public attributes
relative to raw data (average PubLoss = .053 and PrivLoss = .075,
see Figure 4). In addition, our sifting transformations led to consis-
tent classification performance when evaluated using a set of five
modern machine learning methods (linear SVM, kNearest Neigh-
bors, Random Forests, kernel SVM, and Neural Nets).

Categories and Subject Descriptors

K.4 [Computers and Society]: Public Policy Issues—Privacy; 1.2
[Artificial Intelligence]: Vision and Scene Understanding—Mod-
eling and recovery of physical attributes; 1.5 [Pattern Recogni-
tion]: Models—Statistical, Neural Nets; G.1 [Numerical Analy-
sis]: Optimization—Least squares methods

1. INTRODUCTION

The minimal costs of digital sensors, global connectivity, com-
puter cycles, in addition to advances in machine learning algo-
rithms, have made our world increasingly visible to intelligent com-
puters. The synergy of sensing and Al has unlocked exciting new
research horizons and led to qualitative improvements in human-
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Table 1: Data sharing models in sensor applications (all terms

defined in Section 3).
Platform Application Tradeoffs
M1 |sensor data get features, Innovation++

classify, app. logic | Privacy-

M2 |sensor data, classify, Innovation-
get features app. logic Privacy++

S.Sift | sensor data, classify, Innovation+
sift gen., verify | app. logic Privacy+

computer interaction. However, alongside these positive develop-
ments, novel privacy threats are emerging as digital traces of our
lives are harvested by 3rd parties with significant analytical re-
sources. As a result, there is a growing tension between utility and
privacy in emerging smart sensor ecosystems.

In the present paper we seek to provide a new direction for bal-
ancing privacy and utility in smart sensor applications. We are mo-
tivated towards this goal by the limitations in the current models of
data access in smart sensing applications.

At present there are two conventional modes of data sharing in
smart sensing applications and they are either risk carrying or arbi-
trarily stifling:

In the first mode, an application is given access to all of the raw
data produced by a sensor (i.e., the Kinect); the application is then
free to do feature extraction, classification, and run the logic that
powers its functionality. Although this model of data sharing is
great for innovation it leads to a sacrifice in privacy (Table 1, first
row M1).

In the second mode, an application is given access to some re-
stricted set of API calls defined by the platform (i.e., Apple’s iOS)
which restrict access to the raw data produced by a sensor; the ap-
plication can still perform classification and run its logic, however it
no longer has direct access to the data. The benefit of this approach
is that privacy can be significantly increased, however innovation is
significantly diminished (Table 1, second row M2). Given the lim-
itations of these interaction modes, we seek to find a new model of
sensor data access which balances application innovation and user
privacy. To this end we develop an information processing scheme
called SensorSift which allows users to specify their privacy goals
by labeling attributes as private and subsequently enabling applica-
tions to use privacy-preserving data access functions called ‘sifts’
which reveal some non-sensitive (public) attributes from the data
(Table 1, third row S.Sift).

Our tool is designed to be understandable and customizable by
consumers while defending them from emerging privacy threats
based on automated machine inferences. At the same time this tool
enables applications access to non-private data in a flexible fash-



ion which supports developer innovation. Importantly, while the
private attributes must be chosen from a supported list (to enable
data protection assurances) the public attributes requested by ap-
plications do not need to be known in advance by the SensorSift
platform and can be created to meet changing developer demands.

Rather than developing a specific system instance, in this paper
we tackle the challenge of protecting sensitive data aspects while
exposing non-sensitive aspects. We overcome this challenge by
introducing a novel algorithm to balance utility and privacy in sen-
sor data and propose how to embed it in an information process-
ing scheme which could be applied as part of a multi-application
trusted platform.

Towards Privacy and Flexibility in Sensor Systems. Suppose
that an application running on a camera-enabled entertainment sys-
tem (like the Kinect) wishes to determine Alice’s gender to person-
alize her avatar’s virtual appearance. Suppose also that Alice (the
user) has specified that race information should not be available to
applications. At present, Alice can either avoid using the applica-
tion (and thus sacrifice utility) or choose to use the application and
forfeit her ability to ensure privacy.

A natural solution to this tension would be to allow data access
which is based on pre-defined public and private attributes. While
workable for well-known attributes like race and gender, this ap-
proach limits innovation as developers are restricted to the pre-
defined public attributes. Under the SensorSift scheme, applica-
tions can opt to use standard public and private attributes or can
propose novel public attributes not known by the platform in ad-
vance (private attributes are still defined by the system in advance
and exposed to users as options).

Returning to our example, on a SensorSift supporting platform
Alice can specify race as a private attribute. The system would then
transform the raw camera data samples to adhere to this policy by
maximally removing race information while exposing application-
desired attributes. These public attributes could be anything defined
by the developers — including attributes not known to the platform
designers; for simplicity of exposition, however, we’ll use gender
as the public attribute.

The transformed sensor data would only be made available to the
application if the system successfully verifies (using an ensemble
of state-of-the-art classifiers) that the sifted data cannot be used to
recognize the private attribute significantly beyond random guess-
ing. If the sift is verified, the target application would receive the
transformed data which could then be post-processed to infer the
gender value.

Concept Overview. Given a particular sensor context (e.g., op-
tical/image data) and fixed set of data features (e.g., RGB pixel
values) the information flow through our scheme is as follows:
users define private attributes and applications define (request) pub-
lic attributes; developers use provided tools to generate a candidate
transformation (sift) which attempts to expose the [arbitrarily cho-
sen] public attribute(s) but not the specified private aspects of the
data; the user’s system checks the quality of the proposed sift using
an ensemble of classifiers; and lastly, if the verification is success-
ful the application is allowed access to the transformed data.
Typically we expect that the SensorSift platform will ship with
many valid sifts that cater to standard application demands. More
importantly, however, we offer support for application-supplied sift
transformations which would be verified by the platform either at
installation time or when the user changes his or her privacy pref-
erences. Once a particular sift has been invoked and successfully
verified it will be applied to each sensor data release. In the case

where an application is using a known policy (standard public and
private attributes) the platform can automate classification and sim-
ply release an attribute label. Alternatively, if the application needs
access to a novel public attribute it will need to independently clas-
sify the sifted data it receives.

Evaluation and Results. To evaluate our approach, we test how
well we can control the exposure of facial attributes in the PubFig
database of online celebrity photographs [11]. We leverage the face
image attribute scheme of Kumar et al. to provide a quantitative vo-
cabulary through which privacy policies can be defined over facial
features [10]. We then choose a set of 90 policies composed using
10 facial attributes (e.g., male [gender], attractive woman, white
[race], youth [age], smiling, frowning, no eyewear, obstructed fore-
head, no beard, outdoors) and show that it is possible to success-
fully create data ‘sifts” which remove selective facial characteristics
in a discriminating manner to produce high classification accuracy
for public attributes and low accuracy for private attributes (average
PubLoss = .053 and PrivLoss = .075, see Figure 4).

In addition, our sifting transformations lead to consistent clas-
sification performance when evaluated using a set of five modern
machine learning methods (linear SVM, kNearest Neighbors, Ran-
dom Forests, kernel SVM, and Feed Forward Neural Networks).
As an extension we also show that our approach maintains privacy
when applied to complex policies (multiple public and/or private at-
tributes) as well as dynamic video (i.e., sequences of data releases).

To our knowledge our approach is the first solution to verifiably
decompose face images into sensitive and non-sensitive features
when evaluated against state of the art machine classifiers. In ad-
dition, our framework enables on-demand computation and evalu-
ation of sifting functions so that privacy and utility balance can be
created for currently unknown but desired attributes (thus support-
ing application innovation).

2. THREAT AND USAGE MODELS

Smart sensing applications have already been adopted in numer-
ous life-improving sectors such as health, entertainment, and so-
cial engagement [2, 9]. Driven by the diminishing costs of digital
sensors, growth of computational power, and algorithmic advances
even richer sensing applications are on the horizon [1]. In most
instances, smart sensor applications create rewarding experiences
and assistive services, however, the gathered raw data also presents
significant privacy risks given the amount of personal information
which modern algorithms can infer about an individual. The poten-
tial consequences of these risks are not fully understood given the
novelty of the enabling technologies. Nonetheless, we feel that it is
critical to develop ways of managing the information exposure in
smart sensor applications preemptively rather than reactively.

To mitigate potential privacy threats posed by automated reason-
ing applications we propose to employ automated defenses. At a
high level our scheme is intended to enable a quantitatively veri-
fiable trade off between privacy and utility in participatory smart
application contexts. A full description of SensorSift is provided
in Section 3, yet intuitively, our goal is to create a trusted clearing-
house for data which transforms raw sensor captures into a sifted
(or sanitized) form to maximally fulfill the privacy and utility de-
mands in policies composed of user selected private attributes and
application requested public attributes.

We envision a model in which applications are untrustworthy
but, in general, not colluding (we discuss collusion in Section 9).
Applications might be malicious and explicitly targeting the ex-
posure of private attributes; more likely, however, they are well-
intentioned applications that fail to adequately protect the data that
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Figure 1: The two modes of operation in the SensorSift framework.
Thick lines represent the processing elements that are occurring with
each sensor release, while the thin lines indicate operations that are
only necessary at application installation or policy revisions.

they harvest. We do not wish to expose private attributes to well-
intentioned but possibly weak/insecure applications since those ap-
plications might accidentally expose the private information to other
third parties. We also define as out of scope the protection of private
attributes from adversaries with auxiliary information that might
also compromise those private attributes. For example, we cannot
protect the privacy of the gender attribute if an application asks for
user gender during setup, and if the user supplies that information.
We return to a discussion of these limitations in Section 9.

3. SYSTEM DESCRIPTION

While there are numerous potential deployment environments
we primarily envision SensorSift running as a service on a trusted
multi-application platform/system (like the Kinect) on which appli-
cations run locally.

Recall that the goal of the framework is to allow users to spec-
ify private attributes and allow applications to request non-private
attributes of their choosing. At application install time (or when
privacy settings are changed), the user and application declare their
respective privacy and utility goals by creating a policy which con-
tains the user desired private attribute(s) Y~ and application re-
quested public attribute(s) Y. The user selected private attributes
must always be known by the system to ensure that they can be ver-
ifiably protected; thus, the only viable private attributes are those
for which the system’s verification database has labels. Conversely,
applications can request access to non-private (public) attributes
which are unknown to the platform (i.e., developer invented). This
makes it possible for the system to be one of two operating modes
— included or unincluded policy mode.

In included mode (the simpler case), the user chosen private at-
tribute(s) Y~ and the application requested public attribute(s) ¥
compose a verified policy for which a data processing method is
included in the platform. This means that the policy has been pre-
viously checked to ensure that the public attribute(s) do not leak
information about the private attribute(s), and in addition, the plat-
form has (shipped, or has been updated to include) a trained clas-
sification model which can recognize the public attribute(s) from
the raw sensor data. As a result, it is possible to simply output the
trained classifier’s judgment on the public attribute to the applica-
tion (as a text label) for each sensor sample request (Figure 1 top
panel). From the application’s perspective this is a straightforward
way to get access to the public attribute(s) in the sensor data as
all of the inference (pre-processing and classification) traditionally
done by application logic is handled by the platform. We expect

that many applications will opt to operate in this mode, especially
if the list of platform included policies is large and frequently up-
dated.

In some cases, the included list of attributes may not be suffi-
cient to enable the application developers’ functionality and utility
goals. Whenever this is the case, the application interacts with the
platform in unincluded policy mode (Figure 1 bottom panel). In
this mode the user has selected some private attribute(s) ¥~ (e.g.,
age) and the application is requesting access to some novel pub-
lic attribute(s) Y (e.g., imagine that eye color is a novel public
attribute). Since support for this new policy is not included by
the platform it is up to the application to provide a candidate sift
(or data access function F) which can be applied to sensor data to
balance the removal of private attribute information with the reten-
tion of application desired non-sensitive (public) data features. The
proposed sift will only be allowed to operate on the sensor data if
it can be successfully verified to not expose information about the
private attribute(s) specified in the policy. While this scenario is
more challenging from an application perspective, it is also more
flexible and offers a way to meet the rapidly evolving demands of
software developers.

Below we focus our discussion on the usage model for unin-
cluded policies as it is unique to our approach and highlights all of
the SensorSift framework’s subcomponents.

Sift Generation. To create a candidate sifting function for an un-
included policy, applications can use our PPLS algorithm (defined
in Section 4), develop their own method, or potentially use pre-
verified sifts (e.g., crowd sourcing repositories). Code and docu-
mentation for the PPLS sifting generating function are freely avail-
able at http://homes.cs.washington.edu/~miro/sensorSift .

To use the PPLS algorithm, developers need to provide a dataset
of sensor data (e.g., face images in our experiments) with binary
labels for the public and private attributes. To facilitate the genera-
tion of this prerequisite labeled dataset, we imagine that developers
will leverage freely available data repositories or use services such
as Mechanical Turk.

Sift Verification. Once a candidate sift function has been provided
to the platform, SensorSift must ensure that the proposed transfor-
mation function does not violate the user’s privacy preferences. In-
deed, there is no guarantee that a malicious application developer
did not construct a sifting transformation function explicitly de-
signed to violate a user’s privacy. To verify that the transformation
is privacy-preserving, SensorSift will invoke an ensemble of classi-
fiers ML on the sifted outputs of an internal database DB to ensure
that private attributes cannot be reliably inferred by the candidate
sift. We discuss these components in more detail below.

Verification: Internal Dataset. The basis upon which we verify
privacy assurances is a DB,y dataset of sensor samples (i.e. face
images) which would be distributed with each SensorSift install.
For our purposes, we assume that the dataset is in matrix format X
with n rows and d columns, where 7 is the number of unique sam-
ples (i.e., face images), and d is the dimensionality of each sample
(i.e., face features). Large datasets with higher feature dimension-
ality offer attractive targets since they are more likely to capture
real world diversity and produce stronger privacy assurances.

Verification: Classifier Ensemble. The second part of the ver-
ification process applies the candidate sift transformation to each
sample in the internal database. Next an ensemble of machine clas-
sifiers are trained (using a training subset of the internal database)
to recognize the private attributes with the sifted data. We leverage
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state of the art methods which represent the most popular flavors
of mathematical machinery available for classifcation including: a
clustering classifier (k-nearest neighbor — parameters: q =9, us-
ing euclidean distance metric with majority rule tie break; classifier
source: MATLAB knnclassify), linear and non-linear hyperplane
boundary classifiers (linear-SVM — soft margin penalty C = 10;
classifier source: liblinear 1.8; kernel-SVM — soft margin penalty
C = 10, radial basis kernel function, no shrinking heuristics; clas-
sifier source libsvm 3.1), a biologically inspired connection based
non-linear classifier (feedforward neural network — 100 hidden
layer neurons using a hyperbolic tangent sigmoid transfer func-
tion trained using gradient-descent backpropagation evaluated us-
ing mean squared normalized error, classifier source: MATLAB
nnet package), and a recursive partitioning classifier (random for-
est — number of random trees per model = 500; classifier source:
http://code.google.com/p/randomforest-matlab/).

For each ML model, independent training rounds are performed
to obtain classifiers optimized for sifts of specific dimensions. A
testing subset of the database is then used to evaluate how well the
private attribute can be classified after it has been transformed by
the proposed sift.

If any of the classifiers can detect the presence and absence of
the private attribute(s) with rates significantly above the platform’s
safety threshold (e.g., 10% better than chance) the sift is rejected
because it exposes private information. Alternatively if the private
attribute accuracies on the sifted data (from the internal databse)
are below the safety threshold the sift is deemed to be safe.

We again stress that while it is important for developers (or their
applications) to evaluate the resulting accuracies on both public and
private attributes, the system deploying SensorSift would in fact
only verify that the private attribute classification accuracy is small.

Sift Application. If a sift has been proposed and successfully
verified, it needs to be continuously applied with each data request
made by the application. The application itself cannot apply the
sifting transformation directly; this is requisite since, if the appli-
cation had access to the raw sensor data it could be exfiltrated in
violation of the privacy goals. Instead, the SensorSift applies the
verified sifting transformations and outputs only the transformed
data to the application.

Sift Post-Processing. In contrast to included mode where attribute
labels are directly provided to the application, the application must
post-process the sifted outputs (numerical vectors) that it receives
in unincluded mode in order to determine the public attribute. This
will likely involve running a classifier on the sifted sensor samples
— the classifier can be trained using the database used to generate
the sifts; once trained the classifier overhead should be minimal.

4. SIFT ALGORITHM - PPLS

In this work we create sifts using a novel extension of Partial
Least Squares (PLS) that we call Privacy Partial Least Squares,
or PPLS. At the heart of our technique is the long standing ap-
proach of using correlation as a surrogate for information. Given
this perspective we design an objective function which simultane-
ously aims to maximize the correlations with public attributes and
minimizes those with private attributes (while performing the struc-
tural projection of PLS). As we later show, this correlation-based
PPLS algorithm is easy to use and also very effective within the
context of automated face understanding; since our algorithm is
domain independent we believe that PPLS is well suited to various
datasets but this has not yet been verified.

Intuitively, our approach uses correlation between data features
and attribute labels to find ‘safe regions’ in feature space which
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Figure 2: The left panel shows a simplified configuration of feature
sets for two distinct attributes A (private) and B (public). The goal of
SensorSift is to find the region(s) in feature space which are in the pub-
lic feature set but not in the private one (i.e. indicated with the color red
in the left panel). Raw data can be then re-represented in terms of how
strongly it maps to this privacy aware region of the feature space. The
right panel depicts how additional public attributes (C-F) which are
invented by application developers map onto the feature space of our
example. Note that in many cases it is possible to find privacy respect-
ing regions of the region space through which to re-interpret (sift) raw
data, however in some instances (attribute D) it may not be possible to
separate attributes which have strong causal/correlation relationships
(i.e. left eye color from right eye color).

are strongly representative of public but not private attributes (Fig-
ure 2). We then project raw sensor data onto these safe regions and
call the result of the projection a loading or ‘sift” vector.

Privacy Partial Least Squares Now that we have explored the
intuition behind our approach we turn our attention to the details.
To reiterate, Partial Least Squares (PLS) is a supervised technique
for feature transform or dimension reduction [17]: given a set of ob-
servable variables (raw features) and predictor variables (attributes),
PLS searches for a set of components (called latent vectors) that
perform a simultaneous decomposition of the observable and pre-
dictor variables intended to maximize their mutual covariance. PLS
is particularly suited to problem instances where the dimensional-
ity of the observed variables is large compared to the number of
predictor variables (this is generally true for rich sensor streams).

Let X be [x1,--,x4.]7 anx d, matrix of observable variables
(input features), and ¥ = [yy, - -- .,ydy] an x dy amatrix of predictor
variables (attributes), where n is the number of training samples,
dy is the dimension of input features, d is the dimension/number
of attributes. Without loss of generality, X, Y are assumed to be
random variables with zero mean and unit variance. Any unit vector
w specifies a projection direction and transforms a feature vector x
to w! x. In matrix notation, this transforms X to Xw.The sum of the
covariances between the transformed features Xw and the attributes
Y can be computed as

cov(Xw,Y)>  =w' XYy Xw 1)

The PLS algorithm computes the best projection w that maximizes
the covariance:

find max [cov(Xw,Y)z] )
w
st. wiw=1

We propose a novel variant of PLS, Privacy Partial Least Squares
(PPLS), that handles both public attributes and private attributes.
Let Y* = [yf,--,y/.] be a n x d" public attribute matrix, and

Y~ =|[y;,--+,y, -] anxd" private attribute matrix, where d* is
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Algorithm 1 Privacy Partial Least Squares

1. Set j = 0 and cross-product §; = X'yt
2.ifj>0,8;=8;1—P(P'P)"'PTS; 4

3. Compute the
[ =XTY=(r)TX] wj = Ao

largest eigenvector wj:

X Xw;

4. Compute pj = m

5. If j =k, stop; otherwise let P = [pg,---,p;] and j = j+1
and go back to step 2

the number of public attributes and ¢~ is the number of private

attributes. We want to find a projection direction w that both maxi-

mizes the covariance cov(Xw,Y™) and minimizes cov(Xw,Y ™).
This is achieved by optimizing the difference of covariances:

find max [COV(XW,Y+)2 —Axcov(Xw,Y )2 3)
w
st wliw=1

The flow of the PPLS algorithm is outlined in the algorithm box
(Algorithm 1). To transform X to more than one dimensions, we
follow the PLS approach and develop a sequential scheme: we it-
eratively apply Equation 3, subtracting away covariances that are
already captured in the existing dimensions (Step 2 in the Algo-
rithm). Note that we only remove covariances from cov(Xw,Y™)
but not cov(Xw,Y ™), to ensure that every included dimension w is
privacy-perserving by itself for all private attributes.

Free Parameters. There are two key free parameters of the PPLS
algorithm, a A term (privacy emphasis) and the number of sift di-
mensions to release K. In general we only release several dimen-
sions from these sift vectors as a type of dimensionality reduction
step which minimizes the risk of reconstruction. Despite the small
size of the outputs sifts we find that public attributes can be cor-
rectly inferred with minimal accuracy degradation 7.

The A term in Equation 3, represents the relative importance of
privacy with higher A values indicating an increased emphasis on
removing private features (with a possible loss to utility).

S. DATASET

Our evaluation is based on the the Public Figures Face Database
(PubFig) [11] which is a set of 58,797 images of 200 people (pri-
marily Hollywood celebrities) made available as a list of URLs (see
http://www.cs.columbia.edu/CAVE/databases/pubfig/download ).
The PubFig images are taken in uncontrolled situations with non-
cooperative subjects and as a result there is significant variation in
pose, lighting, expression, scene, camera, imaging conditions and
parameters. Due to the size and real-world variation in the PubFig
dataset we felt that it presents an appropriate foundation on which
to evaluate SensorSift.

Validation, Alignment, and Rescaling. We began by download-
ing the PubFig image URLSs using an automated script which would
keep track of broken links and corrupted images. At the time of our
data collection we found 45,135 valid URLS (77% of the advertised
58,797 images). For each image in the database PubFig provides
four pixel coordinates which define the face region; we extracted
this face region for each image aligned it to front-center (via affine

rotation using the roll parameter). Next we rescaled each image to
128x128 pixels using bicubic interpolation and antialiasing.

Feature Extraction and Normalization. In addition to the raw
RGB pixels, we extracted image derivatives of each face image to
enrich the feature space of the raw data and provide a larger starting
dimensionality to our algorithm. The four features we computed
are popular in the computer vision literature and include raw RGB,
image intensity, edge orientation, and edge magnitude [12]. Af-
ter computing these transforms, we apply an energy normalization
(x—u)/(2-0) to the feature values of each face to remove outliers.
Lastly, we concatenate all of the normalized image features for into
a row vector and create a matrix to hold the entire dataset (45,135
rows/faces and 98304 columns/features per face).

PCA Compression. Next, we compute a PCA compression which
is applied to the entire database (10:1 compaction ratio, > 95% en-
ergy maintained) to decrease the feature dimensionality of our face
database and enable the PPLS algorithm to operate within reason-
able memory constraints (16GB per node).

6. EXPERIMENTS AND METRICS

The privacy sifts that we compute are intended to provide quan-
titative assurances which adhere to a specified policy. Policies in
turn are based on a set of user declared private attributes and de-
veloper requested public attributes. In this section we describe how
we selected the attributes to include in the polices we evaluate. In
addition we describe the metrics used to evaluate the quality of the
sift generated for a particular policy.

6.1 Attribute Selection

The authors of the PubFig database were interested in providing
a large vocabulary of attributes over each image to power a text-
based ‘face search engine’ [10] Thus in addition to face coordinates
and rotation parameters, each image in the PubFig dataset is anno-
tated with classification scores for 74 different attributes. These
scores are numerical judgments produced by a set of machine clas-
sifiers each trained for a unique attribute.

For analytical tractability we were interested in reducing the set
of 74 available attributes to a more manageable number. Since we
are using correlation as a proxy for information in our PPLS algo-
rithm we analyzed the correlations between the available attributes
to get a sense for the redundancy in the data.

We found two large clusters of attributes which were centered
around ‘Male’ and ‘Attractive Female’. The ‘Male’ attribute was
very closely correlated with the attributes: ‘Sideburns’, ‘5 oClock
Shadow’, ‘Bushy Eyebrows’, ‘Goatee’, ‘Mustache’, ‘Square Face’,
‘Receding Hairline’, and ‘Middle Aged’. Conversely, ‘Attractive
Female’ was very closely related to: ‘Wearing Lipstick’, ‘Heavy
Makeup’, ‘Wearing Necklace’, ‘Wearing Earrings’, ‘No Beard’,
and ‘Youth’.

Given their strong connection to a large set of the available at-
tributes the ‘Male’ and ‘Attractive Female’ attributes were clear
choices for our analysis, however we wanted to also get coverage
over other characteristics which might be interesting from a privacy
perspective. To this end we chose race (‘White’), age (‘Youth’), and
emotional indicators(‘Smiling’, ‘Frowning’), as well as other at-
tributes which were descriptive about distinct regions of the face
(‘No Eyewear, ‘Obstructed Forehead,’ ‘No Beard’). Lastly we
chose the ‘Outdoors’ attribute as it provides environmental context
and it brings our total up to 10.

Policies. Having chosen a base set of 10 attributes we set out
to evaluate how different choices of public and private attributes
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would impact our goal of balancing utility with privacy. To this
end we created 90 simple policies composed of all possible combi-
nations of a single public and a single private attribute (e.g., pub-
lic:‘Male’, private: ‘Smiling’)" .

6.2 Defining Mask Performance: PubLoss and
PrivLoss

As previously stated, our system aims to produce data trans-
formations which provide a favorable balance between utility and
privacy given a policy instance P, dataset X, and attribute labels
Y. Building on these concepts, we now introduce the quantitative
measurements PubLoss and PrivLoss which judge the utility and
privacy [respectively] achieved for sifts of a specified dimension
within a given policy. PubLoss is intended to measure how much
classification accuracy is sacrificed when public attributes are sifted
(relative to their raw, unsifted versions), while PrivLoss is the dif-
ference between the highest classification rate of sifted private at-
tributes relative to blind guessing.

e PubLoss: Decrease in F sifted public attribute classification
accuracy relative to the achievable accuracy using raw (un-
sifted) data, computed as:

PubLoss = MLy,(X,Y ") — MLy, (Fy+ y- (X,K),Y™)

e PrivLoss: F sifted private attribute classification accuracy
relative to chance, computed as:

PrivLoss = MLy, (Fy+ y-(X,K),Y ") —.5

Where ML,,(X,Y) denotes the Class Avg. Accuracy (Section 6.3)
computed via classifier m using a 50%-50% split of training vs test-
ing instances given data samples X with ground truth labels Y'; and,
F. 4(X,K) indicates the K dimensional privacy sift computed using
data samples X and public and private labels Y and ¥ .

A poor quality F' would yield transformed samples whose public
attributes are unintelligible and whose private attributes are eas-
ily identified (high PubLoss and PrivLoss). Conversely, an ideal
sifting transformation would have no impact on the raw classifica-
tion rates of public attributes while completely obscuring private
attributes (no PubLoss and PrivLoss).

6.3 Classification Measures

The performance criteria we have selected (PubLoss and PrivLoss)

are heavily dependent on measures of classification accuracy. Thus
to provide stronger privacy claims, we now describe a robust ap-
proach to computing classification accuracy.

Class Average Accuracy. A common method of reporting clas-
sification accuracy is based on the notion of aggregate accuracy
shown in Eq (4). Although this metric is suitable to many problem
instances, whenever attributes have unequal distributions of pos-
itive vs negative samples (e.g., 78% of faces in our dataset lack
eyewear) classifiers can achieve high aggregate accuracy scores by
exploiting the underlying statistics (and always guessing ‘no eye-
wear’) rather than learning a decision boundary from training data.
To avoid scores which mask poor classifier performance and warp
our PubLoss and PrivLoss measures we opt to use Class Avg. Ac-
curacy which is a more revealing gauge of classification success
and is calculated as in Eq (5):

'We did not consider policies where the same attribute is both pub-
lic and private

Table 2: Achievable accuracy for each attribute using raw data fea-
tures computed using the maximum classification score across our five
classifiers. Columns one and two use the aggregate accuracy metric and
respectively represent our attribute recognition scores and state of the
art performance (ICCV09 accuracies are reported from [11]). The re-
maining column provides the Class Average Accuracy measure.

Attribute ICCV09|Agg. Accuracy |Class Avg. Accuracy
Male 81.22 94.18 92.86
Attr. Female | 81.13 87.33 84.26
White 91.48 88.07 86.97
Youth 85.79 83.27 79.97
Smiling 95.33 92.11 87.69
Frowning 95.47 89.98 85.35
No Eywear 93.55 87.01 82.86
Obst. Forehead| 79.11 81.01 77.86
No Beard 89.53 88.60 86.13
Outdoor - 88.18 84.83

AggregateAccuracy = (tP+tN)/tS (€))

ClassAvgAccuracy = (tP/(tP+ fP)+tN/(IN+ fN))/2 (5)

Where tP is the number of True Positives (correct identifications),
fP is the number of False Positives (type 1 errors), N is the number
of True Negatives samples (correct identifications), fN is the num-
ber of False Positive samples (type 2 errors), and ¢S is the number
of Total samples (tP+ fP+tN + fN).

As can be seen from equation (5) above, Class Avg. Accuracy
places equal weight on correctly identifying attribute presence (pos-
itive hit rate) and attribute absence (negative hit rate) which in
turn emphasizes classifier precision and offers less sensitivity to
attributes with imbalanced ratios of positive to negative data.

6.4 Achievable Accuracies

Achievable Accuracy is a term we use to refer to the correct
classification rates that we were able to obtain using the PubFig
dataset. As mentioned in Section 6.1, images in the PubFig dataset
are annotated with 74 numerical judgments produced by a set of
74 machine classifiers each trained to recognize a unique attribute.
These scores are positive whenever the classifier has determined
that an attribute is present and negative if the attribute is deemed to
be absent (higher absolute values indicate additional confidence)?.
To produce these numbers each attribute classifier was trained us-
ing 2000 hand labeled (ground truth) samples produced using Me-
chanical Turk [11]. Unfortunately due to the liability policy of
Columbia University these ground truth labels cannot be released,
instead we treat the classifier outputs as a proxy ground truth.

In the first two columns of Table 2, we use the aggregate ac-
curacy metric to compare attribute recognition performance of our
classifiers against state of the art methods. The third column pro-
vides the more robust Class Average Accuracy measure which
we’ll be using as the basis for result discussions. Note that all of
the results in Table 2 are computed raw [unsifted] data features.

In the first column of Table 2 we report the correct classifica-
tion rates of our 10 attributes from the original PubFig publication.
These scores are based on the notion of aggregate accuracy shown
in in Eq (4). In the second column of Table 2 we also use the
aggregate accuracy method however we now apply classification

2Each scores indicates the distance of a sample from the SVM sep-
aration hyperplane



models which we train using the features described in Section 5.
This serves as a verification that we are able to match state of the
art results (in fact outperform for the first two attributes). In the last
column we report the more robust classification measure - class
average accuracy - which we use as a reference for the PubLoss
computations for the remainder of the paper.

When looking at these accuracy rates it is important to note that
the results could be improved with additional data, access to ground
truth labels, and novel computer vision features. However we are
not seeking maximal identification accuracy; instead the achievable
accuracy serves as a reference point, and we are interested in how
our sifting methods operate around it.

7. RESULTS

Below we describe the results of our experiments on the PubFig
dataset. First we set a conservative privacy threshold and deter-
mine the sift output dimensionality that meets this criteria when
measured against our ensemble of classifiers. Next we look at the
PubLoss and PrivLoss computed from the 90 policies using one
public and one private attribute, and describe the factors influencing
the results. We follow this with an extension of our algorithm suited
to complex policies (multiple public and/or private attributes). We
also discuss how our approach can be applied to sequential sensor
samples (i.e. video) and provide a details from a case study. Lastly
we compare our approach to the closest method in the literature.

Sift Dimensionality and Multiple Classifiers. Recall that the
output of our system is a transformation which can be applied to
any input feature vector (i.e., face image) to produce a sifted out-
put intended to uphold a given policy. Our results indicate that
the average (across all policies) PubLoss monotonically decreases
while the average PrivLoss monotonically increases as the number
of sift dimensions exposed to classifiers grows. This is reasonable
since very low dimensional sifts do not carry enough information
to classify public attributes while high dimensional sifts provide an
increased risk of information leakage.

In our evaluation we adopt a conservative threshold, and set the
acceptable PrivLoss to inferences that are 10% better than chance
(i.e., maximal allowed private classification accuracy is 60%). Given
this constrain we find that an output sift dimensionality of K =5,
and A = 1 yield the best average tradeoffs across policies (with one
public and one private attribute accross all tested classifiers). Figure
3 provides examples of our system’s output for two policies (which
use the same attributes in exchanged public/private order) in which
classification accuracy is shown as a function of sift dimensionality.

From an adversarial standpoint, the output of our system repre-
sents an ‘un-sifting’ challenge which can be tackled with any avail-
able tool(s). In general we find that for low dimensional sifts, clas-
sifier accuracies are similar despite differences in the algorithmic
machinery used for inference; however as the sift dimensionality
grows the classifiers increasingly differ in performance — when
we look across classifiers using the 90 simple policy combinations
possible with one public and one private attribute, we find that 5
dimensional sifts have an avg. public attribute accuracy standard
deviation of 3.86% and an avg. private attribute accuracy standard
deviation of 3.77%; whereas 15 dimensional sifts have significantly
larger deviations as avg. public attribute accuracy standard devia-
tion is 8.25% and avg. private attribute accuracy standard devia-
tion is 14.16%. Another interesting observation is that the linear-
SVM and kernel-SVM classifiers consistently produced the lowest
PubLoss while the linear-SVM and randomForest classifiers pro-
duced the highest PrivLoss. The high performance of linear-SVM
is not surprising given the linear nature of our PPLS algorithm.

Policy Results. We evaluated sifts created for each of our 90 poli-
cies (10 attributes paired with all others, excluding self matches)
using each of our 5 classification methods. For each policy, we re-
port the lowest PubLoss and highest PrivLoss obtained across all
5 classifiers in Figure 4. In these matrices, the attribute enumera-
tion used in the rows and columns is: (1) Male - M, (2) Attractive
Female - AF, (3) White - W, (4) Youth - ¥, (5) Smiling - S, (6)
Frowning - F, (7) No Eyewear - nE, (8) Obstructed Forehead - OF,
(9) No Beard - nB, and (10) Outdoors - O. Recall that the PubLoss
results are relative to the achievable accuracies reported in the third
column of Table 2.

Our results indicate that we can create sifts that provide strong
privacy and minimize utility losses at (K = 5 dimensions) for the
majority of policies we tested (average PubLoss = 6.49 and PrivLoss
=5.17). This is a significant finding which highlights the potential
of policy driven privacy and utility balance in sensor contexts!

Performance Impacting Factors Based on our analysis we find
that the PPLS algorithm is able to produce high performing sifts
as long as there are not significant statistical interactions between
the public and private attributes. This is to be expected given the
structure of the problem we are trying to solve. In the extreme
case, if we consider a policy which includes the same attribute in
its public and private set it seems obvious that any privacy enforc-
ing algorithm will have a hard time balancing between utility and
privacy since obscuring the private attribute prevents recognition of
the [same] public attribute.

To formalize the intuition above we use two quantitative mea-
sures to capture the levels of statistical interactions in policies: cor-
relation and overlap. Correlation is the traditional statistical mea-
sure of the probabilistic dependence between two random variables
(in our case attributes). Overlap is a metric we introduce to describe
the degree to which two attributes occupy the same regions in fea-
ture space. Overlap is computed as in equation (6) and normalized
to 1 across our 90 policies. The Correlation and Overlap matrices
in Figure 4 show the correlation and overlap for each attribute pair
in our tested policies.

findZZ max [cov(Xw, Y )2 cov(Xw, Y_)z} 6)
st o wliw=1

To help illustrate correlation and overlap we provide a set of ex-
amples from our analysis. Consider the attributes Male and No
Beard. These attributes are highly correlated (r = —.72). Male
and Attractive Female are another highly correlated attribute pair
(r = —.66). Using our domain knowledge we can reason about
these numerical dependencies as follows: if you know about the
presence of facial hair (i.e., No Beard is false) then Maleness is
easily predicted, similarly if an individual is an ttractive Female it
is highly unlikely that they are Male.

Although correlations provide a key insight into the interactions
between attributes a deeper level of understanding is obtained by
investigating overlap. Returning to our examples, Male and No
Beard have an overlap (.29) which is less than half of the overlap
of Male and Attractive Female (.72). The reason for this is that No
Beard is a relatively localized attribute (i.e., pixels around around
the mouth/chin) and does not depend on features in many of the
regions used to determine Male-ness. Conversely, Attractive Fe-
male and Male have high overlap because they are determined us-
ing many of the same feature regions (i.e., eyebrows, nose, bangs)
as can be seen in Figure 5.
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Figure 3: Left: PubLoss and PrivLoss performance (classification accuracy) as a function of sift dimensionality for two simple policies. Right:
PubLoss and PrivLoss performance for complex policies. In all figures, the lowest PubLoss and highest PrivLoss is reported across all five classifiers.
Dashed lines represent the maximum achievable accuracies using raw (unsifted) data which serve as upper bounds for PubLoss performance.
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Figure 4: PubLoss, PrivLoss, Correlation, and Overlap matrices for our 90 simple policy combinations. Rows denote the public attribute, columns
represent the private attribute, while cells represent policies which combine the row and column attributes. In the case of PubLoss and PrivLoss lower
values are desirable as they indicate minimal utility and privacy sacrifices respectively. Correlation values are shown using absolute values and higher
cell values indicate significant information linkages between attributes. Lastly, high Overlap values indicate that attributes occupy the same regions

in feature space.

Intuitively highly correlated attributes with significant overlap
should prevent utility and privacy balance. This is indeed what we
see when we match up the results of the PubLoss and PrivLoss
matrices with the correlation and overlap matrices (Figure 4).
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Atr.Fem. No
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Male Smiling

Figure 5: The image features (from the red component of the raw
RGB values) which most strongly covary with several attributes (red
values indicate strong positive correlations, blue values indicate strong
negative correlations).

A regression analysis model attributes 63% of the PubLoss es-
timate to correlation and 37% to overlap. In the case of PrivLoss
the weights correspond to 67% and 33% for correlation and over-
lap respectively. Furthermore, using regression we find that cor-
relation alone as a predictor leads to a SSE (sum of squared er-
ror) term which is 315% larger than if correlation and overlap are
used together. These findings suggest that correlation and overlap
should be considered together when analyzing sifting performance.
Extensions: Complex Policies. Although the bulk of our analy-

sis has focused on policies in which there is one public and one
private attribute, our algorithm can be augmented to support multi-
ple public and multiple private attributes. To illustrate the potential

for more complex policies, we modified the PPLS objective func-
tion to produce the largest average gap between multiple public and
multiple private attribute covariances relative to data features.

find  max[avg(cov(Xw,¥h),cov(Xw,¥;"),...)?
—Axavg(cov(Xw, Y, ),cov(Xw, Y, ),...)%]
s.t. wliw=1

Using this averaging method, we were able to find high performing
masks for various policies which include several public and/or sev-
eral private attributes. An example of two such policies is provided
in Figure 3.

Complex policies can include arbitrary ratios of (public:private)
1:2, 1:3, 2:1, 2:2, 3:1 (i.e., public: ‘Male’ + ‘Smiling’, private:
‘White’ + ‘Youth’). The number of complex policy combinations
is very large, however in our tests using (35 complex policies) we
found that the same principles from Section 7 apply. Just as in
the case of simple policies correlations and overlap have a big im-
pact on PubLoss and PrivLoss. In general as polices grow to in-
clude many attributes the likelihood of significant correlation/over-
lap grows thus increasing the chance of diminishing utility and pri-
vacy balance. A more detail analysis of complex policies is a deep
topic which is certainly an attractive target for future work.

Extensions: Streaming Content. So far we have focused our
analysis on static sensor samples (i.e., still photos), however dy-
namic data (i.e. streaming video) is also of importance. To evalu-
ate the SensorSift scheme in a dynamic context we used the Talk-
ing Face dataset [3]. The data consists of 5000 frames taken from
a 29fps video of a person engaged in a natural conversation last-
ing roughly 200 seconds. Using the annotations provided from the
dataset we first cropped the face region from each frame. Next we



extracted image features as described in Section 5. Subsequently
we used the Face.com [16] labeling tool to determine the frames
in which the individual was smiling.

As evaluation, we applied the sift for the policy Male (public)
Smiling (private) to concatenated sets of 10 sequential frames (iden-
tified as smiling) together prior to computing PubLoss and PrivLoss.
As an additional pre-processing step we made sure that the se-
quences of frames we used as our concatenated samples did not oc-
cur at the boundaries of smiling events). We find that the PrivLoss
accuracy increases by only 2.3% while PubLoss accuracy decreased
by 4.5% (using 5 dimensional sifts and a A = 5).

This is an encouraging result and suggests that the SensorSift
technique can be applied to dynamic sensor contexts, however, in
instances where samples are accumulated over longer time sequences
(i.e., days, months) the dynamics of privacy exposure are likely to
change and so will the optimal parameter settings for sift output
dimensionality and privacy emphasis (A). This is certainly an im-
portant area for further research as dynamic sensing becomes more
ubiquitous (i.e. Microsoft Face Tracking Software Development
Kit in Kinect for Windows [2]).

Comparison to Related Work. The most similar publication to
our present effort is a recent article by Whitehill and Movellan [18]
which uses image filters (applied to a face dataset) to intentionally
decrease discriminability for one classification task while preserv-
ing discriminiability for another (smiling and gender). This work
uses a ratio of discriminability metrics (based on Fisher’s Linear
Discriminant Analysis) to perform a type of linear feature selec-
tion. Perhaps the most significant difference between [18] and Sen-
sorSift is that the authors evaluate the quality of their privacy filters
against human judgments whereas we target automated inferences.

To compare against [18] we used the methods and demo dataset
provided on their website. The dataset consists of 870 grayscale
images (16x16 pixel ‘face patches’). It also provides labels for
smiling and gender thus enabling analysis of two policies (1) gen-
der (public) : smiling (private), and (2) smiling (private) : gender
(public).

For each policy we evaluated 3 different combinations of training
and testing data splits (using different 80% 20% splits of training
and testing respectively). For each combination we generated 100
discriminability filters using the provided algorithm (total of 300
filters for each policy) and subsequently used a linear SVM clas-
sifier to evaluate their quality. We found that even though these
filters were reported to prevent successful human judgement on the
private attribtue, even the best filter we found was not able to deter
machine inference.

In particular the lowest private attribute accuracy for the gender
( public ) smiling ( private ) policy was 81.21% (average 86.32%).
Conversely the lowest private attribtue accuracy for the smiling
(public) gender (private) policy was 77.65% (average 83.12%). The
public attribute accuracy decreased by 4% on average relative to
classification performance on unfilted (raw) images.

8. RELATED WORK

Below we touch on the related literature in the broader context
of balancing utility and privacy and subsequently describe efforts
withing the more focused area of face-privacy on which we base
our experimental evaluation.

Utility Privacy Balance. There are several classes of approaches
which have been proposed for finding a utility and privacy balance
in database and/or information sharing contexts. Among these, the
developments in differential privacy and cryptographic techniques
are only remotely connected to our present discussion as they focus

on statistical databases and very limited homomorphic encryption
respectively [7]. More pertinent are the systems based approaches
which typically use proxies/brokers for uploading user generated
content prior to sharing with third-parties. These approaches use
access control lists, privacy rule recommendation, and trace audit
functions; while they help frame key design principles, they do not
provide quantitative obfuscation algorithms beyond degradation of
information resolution (typically for location data) [14].

Lastly, there are several papers which have looked at the question
of privacy and utility balance from a trust modeling and informa-
tion theoretic perspectives [5, 6]. While these are very valuable
problem characterizations which we use to motivate our formal
analysis, we go beyond their framing and develop an algorithmic
defense tool which we apply to a real world problem. Furthermore
we introduce an information processing scheme for embedding our
algorithm into a trusted platform for potential deployment in smart
sensor applications.

Previous Approaches to Face Privacy. Prior work on preserving
the privacy of face images and videos has been almost exclusively
focused on data transformations aimed at identity anonymization.
The methods range from selectively masking or blurring regions of
the face or the whole face [4], perturbing the face ROI (region of in-
terest) with noise through lossy encoding [13], and face averaging
schemes (k-Same, and its variants [8, 15]) aimed at providing k-
anonymity guarantees (each de-identified face relates ambiguously
to at least k other faces). Whereas these methods emphasize recog-
nition deterrence their methods of limiting information exposure
are unconstrained in what face attribute details they perturb. The
only notable exception is the multi-factor (€, k)-map algorithm [8]
which demonstrates a selective ability to enhance the representa-
tions of facial expressions in k-anonymity de-identified faces, how-
ever this approach does not consider privacy granularity below the
level of identity protection.

9. DISCUSSION

Our approach aims to mitigate the emerging privacy threats posed
by automated reasoning applied to harvested digital traces of per-
sonal activity by using algorithmic defenses that enable selective
information exposure — private information should remain private,
while other non-private information can be harvested and used. We
believe that this is a promising approach towards offering quanti-
tative privacy assurances in the rapidly growing market of smart
sensing applications.

A critical strength of the SensorSift design is the built in sup-
port for innovation by future application developers. We provide
an algorithm for generating sifting transformations which can be
used by developers to unlock access to novel data features. As
long as the sifting transformation functions can be verified to yield
minimal sensitive information exposure our system will allow it to
operate over the sensor data. This ability to dynamically generate
and verify novel privacy respecting data access functions enables
flexibility and provides a way to keep up with the rapidly evolving
needs of software providers.

Limitations. We stress that, as with many systems, privacy is
not binary. Indeed, it may be impossible to achieve absolute pri-
vacy in any useful sensor-based system. Our goal, therefore, is to
explore new directions for increasing privacy for sensor-based sys-
tems while flexibly supporting the desired functionality.

An important point to consider is that multiple applications may
request different privacy views (i.e., sift functions) of the image
data. In the present work, we do not consider collusion between
applications — two applications may be able to combine their func-


Face.com

tions to reconstruct information greater than that granted to each
application alone. We do note, however, that some simple measures
can be used to protect against collusion (e.g., apply SensorSift to
all the applications running on a system in unity rather than to each
application by itself, or only allow one application access to facial
attributes over some period of time).

A second potential weakness of our approach is that adversaries
may have additional knowledge sources at their disposal which can
reveal private information that SensorSift is unable to counteract.
Our goal is to explore how to protect against unauthorized privacy
disclosures from the sensed data itself, not to defend against auxil-
iary information sources. Indeed, auxiliary information can almost
always break any privacy or anonymity-preserving system. As an
extreme example, suppose the private attribute is race but that the
application asks the user to complete a biographical form — which
includes race — during the application installation process.

Third, our approach leverages classification metrics to verify that
the data exposed to applications does not reveal significant informa-
tion about private attributes; it is possible that future machine learn-
ing tools can significantly outperform our benchmarks. To mitigate
this evolving algorithmic threat, our scheme uses an ensemble of
multiple machine classification tools which span the space of state
of the art linear and non-linear methods. Further, the design is
meant to support plug in modules so that new classifiers can be
added on demand to enrich the privacy metrics.

10. CONCLUSION

Given the growing demand for interactive systems, the low cost
of computational resources, and the proliferation of sophisticated
sensors (in public/private locations and mobile devices) digital traces
of our identities and activity patterns are becoming increasingly ac-
cessible to third parties with analytics capabilities. Thus, although
sensor systems enhance the quality and availability of digital in-
formation which can aid technical innovation, they also give rise
to security risks and cause privacy tensions. To address these con-
cerns we proposed a theoretical framework for quantitative balance
between utility and privacy though policy based control of sensor
data exposure.

In our analysis we found promising results when we evaluated
the PPLS algorithm within the context of optical sensing and au-
tomated face understanding. However, the algorithm we introduce
is general, as it exploits the statistical properties of the data; and in
the future it would be exciting to evaluate SensorSift in other sensor
contexts.
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