
Identifying Game Players with Mouse Biometrics

Ryan Kaminsky, Miro Enev, Erik Andersen

December 8, 2008

Abstract

Recent work in mouse movement analysis has determined that, with sufficient data,
users can be uniquely identified solely by their mouse movements. We consider the
domain of video games and attempt to use mouse movements to identify game players.
We conduct a user study that requires users to perform baseline tasks in a controlled
environment, and then play Solitaire and StarCraft, two popular video games. We
extract features from the mouse movement raw data and employ basic (k-Nearest
Neighbor) and complex (Support Vector Machine (SVM)) machine learning techniques
to classify users. The accuracy of the identification varies with the variety of moves
available in a particular game, but we are able to identify the players in our user study
with accuracy well above what random chance would predict.

1 Introduction

Authentication and privacy are important not only for secure systems like electronic banking
and email, but also for video games. Currently, there are thousands of video games on
the market. Many of them are casual games, such as Solitaire, Minesweeper, and online
Flash games, while others are more serious, such as the popular real-time strategy game
StarCraft, or the first-person shooter game Halo. In each of these games, players use the
mouse and keyboard to interact with the computer and, in so doing, develop their own style
of interaction. It is possible that this style is unique enough that it could leak information
about the player, which is a concern from a privacy standpoint. On a more positive note,
however, uniquely identifying players by their styles could lead to stronger authentication
and make cheating more difficult.

Recent work in using machine learning to identify users by their mouse movements has
produced some promising results. Thus, we present a system that records mouse movements
while a player is playing a video game, analyzes this data, extracts features, and uses them
to identify the player. We are able to uniquely identify players as well as determine a player’s
gender.

We have conducted a small user study to gather data on user interaction in a controlled
baseline application and two video games: Solitaire and StarCraft. Solitaire is a simple,
casual game, while StarCraft is a more complex game requiring more detailed mouse move-
ments. The user study consisted of fifteen participants who played both games and performed
some baseline tasks such as generic mouse moves, clicks, and drags.

1



For both games, we learned the user identification model using part of the user data
and tested our model with the rest, using k-Nearest Neighbor (kNN) [5] and Support Vector
Machine (SVM) [4] learning methods. Our data shows that game players can be uniquely
identified using mouse movements under certain conditions.

2 Related Work

Modern GUI work is based in part on Fitt’s law [7] and the Accot-Zhai steering law [1]. This
is especially true regarding mouse movement analysis. These laws relate the time required
to perform a task, using a pointing device like a mouse, with other attributes of the task,
such as distance traveled. Fitt’s law models human behavior by creating a relation that
predicts the time necessary to select a target during a series of rapid moves as a function
of the distance and size of the target. The Accot-Zhai steering law is a 2D version of Fitt’s
law. We use these in the construction of our baseline application.

Weiss et. al. [12] studied mouse movement biometrics by having users perform tasks
such as button presses and mouse drags for a fixed pattern on a standalone application
that gathers data. They then analyzed the mouse movement data, created feature vectors
and attempted to identify individual users using k-NN learning techniques. Our work uses
a similar baseline application, but we also capture mouse movement data for two games,
both having more random mouse movements than the baseline. We also have over double
the number of study participants. We think the increased number of participants and the
randomness introduced by complex games adds additional complexity to the problem.

Ahmed and Traore [3] attempt to detect unauthorized access using mouse and keyboard
dynamics and construct a Mouse Dynamic Signature (MDS) of seven factors for each indi-
vidual. Pusara and Brodley [9] attempt to detect changes in mouse movement biometrics
and query users to reauthenticate to verify their session hasn’t been hijacked. A survey of
authentication methods based on mouse movement biometrics is found in [11]. Our work
differs from these works in that they focus on authentication of users in a controlled setting.
Mouse use in video games is more dynamic and unconstrained and poses a more challenging
problem.

3 Data Collection

We conducted a user study to obtain game player mouse-movement data. The study con-
sisted of three parts: performing the baseline experiments, playing Solitaire, and playing
StarCraft. The participants were all graduate students in Computer Science at the Uni-
versity of Washington. Ten of the participants were male and five were female. All of the
participants were familiar with the rules of Solitaire and had played the game before. Eleven
of the participants knew how to play StarCraft, and we gave a short tutorial to the other
four participants who had not played before. All four of these beginners were female. We ran
all of our experiments on the same computer, to ensure that parameters such as processor
speed, mouse sensitivity, monitor size, and resolution were consistent for all users.

A natural extension to our framework would be the addition of keyboard feature analysis,
however, we chose to focus exclusively on mouse events as a means of user identification for

2



several key reasons. Firstly, we are interested in applying our methods in the web domain
where user interactions are predominantly generated by pointing devices such as mice and
pen-tablets. Furthermore, in a web context keyboard events are only induced by form-based
sites or identification/password entry fields and keystroke dynamics analysis has already
been applied in these settings to provide stronger authentication [14]. Lastly, the practical
success of keystroke dynamics [2] leads us to believe that appending keyboard features to
our machine-learning methods would most likely improve our results.

3.1 Baseline experiments

We developed an application to capture baseline mouse actions from the users in our study.
This application allowed us to gather data in a controlled environment for each individual so
that we could compare it with his or her mouse action characteristics gathered from playing
the games. Additionally, it allowed us to explore higher-level mouse events, such as clicks
and drags, to find mouse characteristics that could identify an individual user with more
accuracy.

The baseline application consists of three major areas that attempt to capture three of
the most important mouse actions that an individual can perform: mouse moves, clicks, and
drags. Screenshots of each of the tasks appear in Figure 1. The first task requires that the
user click as rapidly and accurately as possible between two targets that are evenly spaced
on each side of the window’s center point. We ensure that both the horizontal and vertical
directions are covered and vary the distances and target sizes. The second task requires
users to drag a circular shape to a target location from sampled angles covering a 360 degree
range. The final task requires users to double click on a target. By providing specific, detailed
tasks, we constrain the degrees of freedom of mouse actions and can compare individual users’
actions more easily. The baseline application collects general mouse movement data as well
as accuracy statistics such as distance from the center of a target.

3.2 Solitaire

The second phase of our user study involved playing Solitaire, a single-player, casual video
game that involves the movement of virtual playing cards. The objective of the game is to
move cards from a shuffled deck onto a tabletop and into piles that are sorted by suit. The
cards must be moved in a way that adheres to a set of rules. The game is freely distributed
with many versions of Windows. As a result, Solitaire is quite common and many people
have some experience playing the game.

We used the standard Solitaire application that comes with Windows XP for our user
study. The particular arrangement of cards in the game was chosen at random. We instructed
users to play for five minutes, and asked them to start a new game if they won or became
stuck.

3.3 StarCraft

The final phase of our user study involved playing StarCraft. StarCraft is a real-time strategy
game that was released for the PC by Blizzard Entertainment in 1998. Players build small

3



Figure 1: Screenshots of the baseline program. Top left and top right: clicking tasks. Bottom
left: dragging tasks . Bottom right: double clicking tasks.

characters, move them across a playing field, and use them to attack the armies of other
players. Timing is a critical concern, and playing competitively requires a large number of
mouse movements. StarCraft is not as ubiquitous as Solitare, but retains a devoted fanbase
and is played in online tournaments.

In our study, each user played against a single AI-controlled opponent on the same two-
player map, which is named Astral Balance and is at the top of the list of Blizzard-constructed
maps. Each of the players played as the Terran race, but the race of the opponent was
randomly chosen to be either Terran, Protoss, or Zerg. The user’s starting location in the
map was either at the lower-left corner or the upper-right corner, with equal probability.

Each user played StarCraft for fifteen minutes. If the player won or lost before fifteen
minutes had elapsed, we restarted the game and continued recording user data. As a wide
variety of skill levels were represented by the participants, the specific games had varying
outcomes. In some games, players finished the game in a strong position, and in others,
players finished the game in a weak position. This adds an additional challenge to the
classification problem, as user interaction could vary depending on the result of the game.

4 Analysis and Results

4.1 Event logging and action extraction

We developed a C# program that adds hooks to the Windows API to log low-level mouse
events. We use this program to capture mouse movements, left and right mouse button
presses, and left and right mouse button releases. Using MATLAB we parse these raw events

4



Figure 2: State machine logic for parsing events into actions.

Figure 3: Visualizations of the first three movements in a solitaire game. Top row: each
“x” represents the (x, y) pixel location of a mouse event comprising the action. The red and
green circles represent begin and end events. Bottom row: the normalized velocity for each
mouse event for the action above in pixels/microsecond over the course of the action.

into three composite actions: mouse movements, clicks, and drags. We do this with the state
machine logic of Figure 2. An example of higher level actions and statistics constructed
during a game of Solitaire is shown in Figure 3. We use the key-logger program and state
machine logic to record and process mouse events for baseline tasks and both games.

4.2 Baselines

We generate feature vectors (Section 4.4) from the baseline data and then run several ex-
periments training and testing on this data (Section 5). We also examine this data for the
tradeoff between accuracy and speed predicted by Fitt’s Law:

T = a + b log2(
D

W
+ 1) (1)

In this equation T is the average time for the task, a and b are experimentally determined

5



Figure 4: Graphical comparison demonstrating the tradeoff between speed and accuracy as
demonstrated by Fitt’s law.

constants for a particular device, D is the distance to the center of the target and W is the
width of the target. We see that there is an direct relationship between the distance D of
the target and the time T of the task, and an inverse relationship between the width W
of the target and the time T . This gives rise to the tradeoff between speed and accuracy.
Figure 4 demonstrates the relationship between these two attributes for a pointing task,
using a mouse to click on a target, from our baselines. The relationship is linear because in
this case, a lower accuracy number translates to better accuracy.

4.3 Solitaire and Starcraft

Example data from three users is shown in Table 5. The variability in the table is rep-
resentative of the subject pool. Note that the inter-user differences in the feature vectors
of StarCraft are much greater than the variability in Solitaire. This phenomenon could be
attributed to several factors. One such factor is that there were more pronounced differences
between novices and experts in StarCraft. Another possible explanation is that the action
space in Solitaire essentially restricts the user’s controls to dragging cards of fixed dimension
to one of a few possible locations; in StarCraft the controls are much more fluid and allow
the user a few different ways to achieve a particular in-game task.

4.4 Features

Based on the collected raw data, we created several features that help to uniquely identify
users. For all mouse moves without a button press (mouse move), mouse drags with the left
button pressed (left drag) and mouse drags with the right button pressed (right drag) we
compute the features below:

6



• Path Length Mean - The average path length of all action types of the same class. The
path length of a single action is defined as in [12]

∑n
i=2

√
(xi − xi−1)2 + (yi − yi−1)2

• Path Length Standard Deviation - The standard deviation of the path length of all
actions of the same class.

• Velocity Mean - The average velocity of all actions of the same class. The velocity of

a single action is defined as in [12] 1
n

∑n
i=2

√
(xi−xi−1)2+(yi−yi−1)2

ti−ti−1

• Velocity Standard Deviation - The standard deviation of the velocity of all actions of
the same class.

For left and right mouse button click actions we compute the following features:

• Click Length Mean - The average length of time of all clicks. The click length is defined
as the difference in timestamps between the button down and button up events.

• Clicks per Minute - The number of clicks per minute in a particular time slice.

As a final feature relating to clicks, we compute the Total Clicks per Minute as the sum
of Clicks per Minute for the right and left mouse buttons. We also create features based on
the spatial information generated by a user’s session:

• Percentage of Clicks in Quadrant - We divided the screen into four logical quadrants:
Northwest, Northeast, Southwest and Southeast and compute the percentage of clicks
occurring in each quadrant.

The total vector for each user initially consisted of 21 features. Through empirical exper-
iments we determined that some features adversely affected the accuracy of user identifica-
tion. We determined that the four features comprising the Percentage of Clicks in Quadrant
were too specific to the game and the particular minute of the game. For example, early in
StarCraft, a player may spend a large amount of time collecting resources in the Northeast
portion of the screen, returning here only sporadically during the remainder of the game.
Such a pattern was common in the data and invalidates these features for the purpose of
identification. Therefore, the final feature vector includes 17 features.

4.5 Feature information gain

The Weka [13] toolkit offers tools for determining which attributes provide the most infor-
mation gain [8] for a particular classification task. Table 1 displays the top three features
in terms of information gain for each recognition task. Left Click Length Mean is the best
indicator when recognizing individuals in both Solitaire and StarCraft. Gender differences
for StarCraft become highly visible in the number of Clicks per Minute, while Left Drag
Velocity Mean is the best indicator of gender for Solitaire. These results clearly show that
there are distinct mouse movement characteristics for both individuals and genders, but that
the particular distinguishing characteristics vary across games.

7



User 1 User 2 User 3
Solitaire
Mouse Move

Vel Mean 0.29927 0.41428 0.39501
Vel Std Dev 0.32838 0.54221 0.43745
Path Length Mean 348.7095 248.0512 213.8354
Path Length Std Dev 501.3774 270.3284 250.7962

Clicks
Left/Min 18.0847 16.2154 35.0093
Left Length Mean 0.18744 0.11744 0.18469

StarCraft
Mouse Move

Vel Mean 0.53084 0.70551 0.77778
Vel Std Dev 0.6316 0.92241 1.1966
Path Length Mean 1158.0631 206.9399 603.4157
Path Length Std Dev 1548.9047 306.7001 907.565

Clicks
Left/Min 5.0026 48.1123 20.0625
Left Length Mean 0.1938 0.081396 0.0844
Right/Min 13.0067 65.152 18.0563
Right Length Mean 0.15008 0.069769 0.0825

Figure 5: Sample of user features gathered during our study.

Rank
Solitaire StarCraft

Individual Gender Individual Gender
1 Left Click Length Mean Left Drag Velocity Mean Left Click Length Mean Total Clicks/Min
2 Total Clicks/Min Left Drag Velocity Std Dev Right Click Length Left Clicks/Min
3 Left Clicks/Min Right Drag Path Std Dev Mouse Move Velocity Std Dev Right Clicks/Min

Table 1: Features with the most information gain for each game and recognition task.

5 Results

We first attempt to learn models for each game individually. To increase the amount of train-
ing data, we split the Starcraft and Solitaire event data streams into one-minute segments
and learn SVM, 1-Nearest Neighbor, and 7-Nearest Neighbor models. We used RapidMiner
[10], a free program downloadable from the Internet, to construct our SVMs. There are
several adjustable parameters available on the SVM. We determined the most effective pa-
rameters empirically and used the same parameters for all datasets. For the nearest neighbor
algorithms we also used the downloadable Weka [13] toolkit. The L-1 Norm is used for cal-
culating nearest-neighbor distance and for the 7-Nearest Neighbor test runs, we weighted
each neighbor’s vote by the inverse of its distance from the test feature vector.

For testing, we attempt to identify each individual via ten-fold cross-validation. The left
side of Table 2 summarizes our results. In all of these examples, the chance of correctly

8



Game
Individual Gender

Model Type Accuracy Model Type Accuracy

Solitaire

SVM 57.5% SVM 86.8%
1NN 48.0% 1NN 78.7%
7NN 49.3% 7NN 81.3%
Random Chance 6.7% Random Chance 66.7%

StarCraft

SVM 79.3% SVM 93.3%
1NN 63.9% 1NN 89.7%
7NN 65.5% 7NN 93.8%
Random Chance 6.7% Random Chance 66.7%

Table 2: Accuracy at identifying individuals and gender with cross-validation.

identifying a particular player by picking randomly is 1/15, or 6.7%, yet we are able to
identify people with much higher accuracy—57.5% for Solitaire and 79.3% for StarCraft.
Note that the SVM performs better than both nearest neighbor methods. In neither case
are our models able to identify players perfectly, but we believe our data shows that mouse
movements do indeed leak a user fingerprint that can be used to identify players. We also
point out that the accuracy for StarCraft is higher than Solitaire. We believe this refutes
our hypothesis that the greater variety of motions that a player is expected to perform in
StarCraft would make classification more difficult.

Given that our user study contained 10 men and 5 women, we now try determine if gender
plays a role in the uniqueness of an individual’s mouse movements. Our results can be seen
in right side of Table 2. On this easier task, our models perform much better percentage-
wise, identifying 86.8% of gender classes for Solitaire and 93.3% for StarCraft. However, the
random chance classification is also much higher at 66.7% if the classifier chooses male for
all subjects. Note again that the SVM outperforms nearest neighbor classification.

We observe that our user study has a limited number of people, and therefore our sets
of men and women are probably not representative of the sets of all men and women. We
may have simply reduced the classification task to identifying whether a particular user is
more likely to be part of one group that happens to include ten men or another group which
happens to include five women. Nevertheless, our models seem to perform reasonably well
on this task.

In the case of StarCraft, there was a significant difference between the male and female
participants in terms of experience. All of the men were familiar with the game, while only
one of the females was. Therefore, it could be that our analysis of gender for StarCraft is
actually more related to skill than gender. However, there was no experience gap in Solitaire,
and we are able to achieve similar results. This suggests that while the StarCraft gender
model may be leveraging differences in skill as well as gender, our model also seems to work
when the skill of the players is similar.

We were particularly interested to see if our models we able to identify users across
games. For example, we wanted to know if a model learned on Solitaire could identify
users playing StarCraft. Unfortunately, our models were not so successful. Table 3 shows
our results. These results seem to suggest that our features are primarily capturing game-

9



Model Learned On Model Applied To Model Type Accuracy

Solitaire StarCraft

SVM 13.9%
1NN 12.4%
7NN 13.4%
Random Chance 6.7%

StarCraft Solitaire

SVM 26.7%
1NN 17.3%
7NN 12.7%
Random Chance 6.7%

Table 3: Accuracy at identifying users across games.

specific fingerprints. This is disheartening, perhaps, although it does not necessarily mean
that there are no features that would work across games.

Finally, we analyzed our baseline tasks. We computed one feature vector for each in-
dividual, learned our models, and then applied these models to identify users in Solitaire
and StarCraft. Conversely, we also attempted to classify user baselines by applying models
learned on each game to the baseline feature vectors. Our results can be seen in Table 4. It
appears as though neither direction was successful. Our original goal when using baselines
was to isolate individual motions by reducing the variability of movements a user performed.
We believed this would allow us to capture canonical mouse characteristics of individual users
that would be easily identifiable as fingerprints when a user plays a game. Additionally, we
feared that extracting this fingerprint from game data would be too challenging given the
unconstrained mouse movement space. Essentially, we felt that baseline data would give a
“clean” fingerprint, whereas game data would be too cluttered.

However, it turns out that the models from the games themselves are sufficient for iden-
tification because of the large amount of data and the power of the classification tools. It
appears as though our baseline tasks did not sufficiently capture the fingerprint space of an
individual. We hypothesize that we did not capture enough baseline data to build a model
that is powerful enough to be sensitive to differences in user interaction. Instead, simply
having users perform many actions within a game and building the model from game input
data was more successful.

Given that mouse usage provides identifiable information, we recognize that it could
be susceptible to forgery as with many other authentication techniques. However, simply
capturing and reconstructing someone’s mouse events would only be useful for accomplishing
the tasks that the user was originally trying to perform. Any variation on the specific task
would make it difficult to artificially recreate a sequence of mouse moves with the proper
signature that successfully completes the new task.

6 Applications

There are a number of applications where the ability to identify an individual based only
on mouse movements would be valuable both within the realm of video games and within a

10



Model Learned On Model Applied To Model Type Accuracy

Baseline Solitaire

SVM 10.7%
1NN 12.0%
7NN 12.0%
Random Chance 6.7%

Baseline StarCraft

SVM 6.2%
1NN 6.7%
7NN 6.7%
Random Chance 6.7%

Solitaire Baseline

SVM 20.0%
1NN 20.0%
7NN 20.0%
Random Chance 6.7%

StarCraft Baseline

SVM 20.0%
1NN 13.3%
7NN 20.0%
Random Chance 6.7%

Table 4: Accuracy at identifying users with baselines.

broader context. With massively-multiplayer online games becoming more popular, people
are seeking to make money both through game competitions and gambling. Profit-making
provides an incentive for attackers to game the system through many means. For example, if
someone hijacks a game player’s account, the attacker could purposely reduce the legitimate
user’s score or ranking, or transfer money or objects of real world value. In online poker,
a hacker, having logged into someone’s else account, could purposely lose several hands to
transfer money to a co-conspirator. By using mouse metric signatures, a different user could
be detected and the original user alerted. This could also be applicable to many online
websites, banking sites for example, where a hacked account can prove costly. Although
contextually different from a video game, a banking site could ask a user perform a mouse
task that is able to capture signature information as well as a video game.

Another application involves identifying cheating players. In StarCraft, there are several
hacks available that can give advantages to one party over another. One such hack is called
a “map hack” and allows a player to see what the other players are doing at all times. One
approach for dealing with this problem is to ban cheating players from online servers, but
they can simply log back on with different account names. By using mouse signatures, online
server operators could potentially identify repeat offenders and ban them more effectively.
This approach could be extended further to detect bots. To gather the required level of mouse
event granularity, nearly any client (application, webpage, etc.) could be instrumented to
record this data.

There are also potential privacy concerns associated with such a mouse tracking system.
For example, public computers installed with such software could be used to track users’
movements around a city or time usage patterns (person A uses this computer from 10-11am
on Mondays and Wednesdays).

11



7 Future Work

One area of future work is to build a model that can work across many game domains. We
had hoped that our baseline analysis and feature selection would allow us to build such a
model, but this turned out not to be the case. A more thorough analysis of how a user’s
interaction style changes based on his or her specific activities could help develop a set of
features that account for these differences, leading to a more accurate model.

Our experiments were conducted in a controlled setting, using the same computer, mouse,
display and resolution. We wonder if experiments under less ideal conditions, involving
different mice, computers (desktops vs laptops) and resolutions would yield similar mouse
signatures. Additionally, we would like to explore the possibility of identifying users on the
web where the mouse is the input device of choice. In this setting we do not have direct access
to operating system mouse events so we would have to rely on capturing JavaScript mouse
events. Using the web may also allow us to examine if our techniques scale to hundreds and
thousands of uses or if a different approach is needed.

Another area of exploration involves anonymizing mouse movements. In the same way
that network traffic is anonymized using systems such as Tor, developed by Dingledine et.
al. [6], a mouse anonymization system could add artificial actions and delays into the mouse
data stream to anonymize a signature.

8 Conclusion

We present a system for identifying individual users based on mouse movement dynamics.
We identify users in three distinct settings: a baseline application with controlled movements,
a casual game with slightly less controlled movements and a full screen action game with
random movements that change based on players and the game scenario. Using mouse
movement data that we collect during a user study, we develop features that are unique to
individual players and that we use to identify them in a set of test data. Our system is able
to uniquely identify users with an accuracy rate much higher than random chance, but the
models we constructed do not perform well across game domains. However, we believe it is
accurate enough to be useful for applications that attempt to identify cheating players or
unauthorized users.

References

[1] J. Accot and S. Zhai. Refining fitt’s law models for bivariate pointing. In ACM CHI Conference
on Human Factors in Computing Systemsm, pages 193–200, 2003.

[2] Admit one security. http://www.admitonesecurity.com/.

[3] A. A. E. Ahmed and I. Traore. Detecting computer intrusions using behavioral biometrics.
Privacy, Security, and Trust, 2005.

[4] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20, 1995.

[5] T. Cover and P. Hart. Nearest neighbor pattern classification. Information Theory, IEEE
Transactions on, 13(1):21–27, Jan 1967.

12



[6] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the second-generation onion router. In
Proceedings of the 13th Conference on USENIX Security Symposium, volume 13, August 2004.

[7] P. M. Fitts. The information capacity of the human motor system in controlling the amplitude
of movement. Journal of Experimental Psychology, 47(6):381–391, 1954.

[8] T. M. Mitchell. Machine Learning. The Mc-Graw-Hill Companies, 1997.

[9] M. Pusara and C. Brodley. User re-authentication via mouse movements. 2003.

[10] Rapidminer. http://rapid-i.com/.

[11] K. Revett, H. Jahankhani, S. T. de Magalhes, and H. M. Santos. A survey of user authenti-
cation based on mouse dynamics. In Communications in Computer and Information Science
Global E-Security 4th International Conference, June 2008.

[12] A. Weiss, A. Ramapanicker, P. Shah, S. Noble, and L. Immohr. Mouse movements biomet-
ric identification: A feasibility study. In Proc. Student/Faculty Research Day, CSIS, Pace
University, pages 1–8, May 2007.

[13] Weka. http://www.cs.waikato.ac.nz/~ml/weka/.

[14] Wikipedia entry on keystroke dynamics. http://en.wikipedia.org/wiki/Keystroke_
dynamics.

13


