
A Search Scheme for a Multi-Dimensional Time Series Database

Miro Enev, Chloé Kiddon, Kathleen Tuite

3/20/2009

Abstract

We propose an indexing and searching scheme for multi-dimensional time series. To avoid
the curse of dimensionality we introduce a novel method for structured dimensionality reduction
which allows our system to store separate database tables for user-specified sets of dimensions.
To find similar matches for a query, we run separate queries on nonintersecting subsets of
dimensions of the full query, and then join on the ids of those results to find all candidate
matches to the query; then, with fewer candidates, we can apply more costly similarity measures
to find the best matches to the query. While checking each table sequentially may take longer
than just using one table to index the full time series, the whole system will be faster using a
parallelized process. Our system also allows for users to query on a partial set of dimensions
efficiently.

We analyzed the effectiveness of our scheme by finding matches to query hand movements
in a database. We found that the ability of the user to specify the dimensional groupings
of interest adds a high level of flexibility without a significant sacrifice in accuracy with a
high average percentage of the top result sets being shared between the output of the full vs.
grouped dimensional datasets. The absolute best match to a query was shared in 73 percent of
our experiments.

1 Introduction

Many interesting information retrieval problems
can be phrased in terms of searching through
time series data for contiguous sequences which
match a query pattern (within some limit of al-
lowable temporal variation). Although there has
been some progress along this line of work, ef-
ficient algorithms remained elusive until 2005
when Eamonn Keogh and his colleagues cre-
ated an integrated time-series matching frame-
work based on dimensionality reduction, index-
ing, and dynamic time warping.

Keogh’s indexing paper defines its functions
based on time series of a single dimension.
While it is possible to generalize them to multi-
dimensional data (sections 4 and 5.1), doing so
adds a tremendous amount of complexity and
makes the process much slower. Therefore, we
developed a system to reduce the dimensional-
ity of the data by splitting up the dimensions

into independent groups. For example, for hand
movement data where each finger has two sen-
sor’s worth of data, it may make sense to split up
the full movement’s time series by finger. Then,
instead of storing and searching through time
series of ten dimensions, we only examine two
dimensions at a time. We find that this divide
and conquer strategy is more efficient than at-
tempting to traverse indexes and apply similar-
ity metrics in the full dimensional space. This
process may return different results than if we
search through the entire hand space at once;
there can be good overall matches that are not
returned in the top results for each separate fin-
ger. However, we hoped that this reduction in
recall would not be substantial.

Our system also allows the user to query the
database using a partial set of dimensions. For
example, with hand motion data, a user may
only care about a movement the index finger
is making instead of a full hand motion. Since

1

we store sets of dimensions independently of
each other, our system is more efficient at these
types of queries since the full time series in the
database will never be examined and only the
tables containing the important dimensions will
be searched.

2 Related Work

Querying databases for time series data has been
discussed in previous literature. Berndt et. al.
introduce a technique called dynamic time warp-
ing (DTW) for databases, a technique which
uses dynamic programming to match two se-
quences which may have similar structure but
vary in time or speed[1]. Using DTW directly,
if one wishes to match a query trajectory (a time
series), one must scan the entire list of trajecto-
ries stored in the database and apply DTW re-
peatedly, incurring a large computational cost.
To improve upon this, an index is required. One
approach is to split up the trajectory into N
pieces, take the average values of each piece to-
gether as a size-N feature vector, and build an
index on this feature vector[4]. Chan et. al. are
one of several groups to show that Euclidean
distance does not work as an index for DTW[5].

Keogh finally hits on exact indexing of dy-
namic time warping using a special lower bound
function that guarantees no false dismissals[2].
This means that trajectories that are sufficiently
far away from the query trajectory are not con-
sidered. This paper is the basis of our imple-
mentation for this project however we extended
this work to the multi-dimensional context. The
most similar work is by Vlachos et. al. which
emphasizes indexing of multi-dimensional time
series, including applications to motion capture
data[7]. Finally, Keogh et. al. also address mo-
tion capture data[3].

The significant difference between these ap-
proaches and our proposal lies in the emphasis
on dimensionality selection (grouping) for driv-
ing the internal query engine structure. We pro-
vide client applications the ability to choose sub-
sets of the data’s dimensions and based on this
specification, our system stores separate tables

and indexes for each groups dimensions. In the
context of the hand movement dataset, for ex-
ample, the user can specify groups of joints (i.e.
index finger and thumb) that will have an inde-
pendent R-tree index and table representation
for fast searching. The subset of dimensions
selected by the user should allow for more se-
lectivity and a considerable speedup for the cre-
ation and use of the R-tree index and subsequent
DTW comparisons.

Figure 1: Cyberglove with labled joints.

3 Hand Movement Dataset

As a basis for the project, we have obtained a
dataset of time-series data of human hand move-
ments, where each movement in the dataset is
a measure of the angles of different join sen-
sors over time. The dataset consists of joint
angles dowsampled to 20 Hz (from the original
100Hz) from 10 joints (two from each digit) of
the left hand recorded using a wireless Cyber-
glove (Figure 1) worn during 6 hours of self ini-
tiated tasks from three subjects for a total of 18
hours of data. The raw dataset allows us access
to additional parameters that describe the ab-
duction/adduction of the fingers relative to each
other and the thumb relative to the hand; we
also have the palm flexion/extension informa-
tion. For the purposes of this project we chose
to focus on the 10 dimensional joint data only.
The data was broken down into separate 5 sec-
ond movement chunks and periods of inactivity
were discarded (queries to the database are in-
stances of 10 dimensional 5 second movement

2

Figure 2: An example 5 second movement chunk - each timeseries represents a single joint’s data

chunks). An example movement is illustrated in
Figure 2, note that the joint angles can vary be-
tween +90 (joint extension) and -90 (joint flex-
ion) degrees.

4 Background Knowledge

The equations in this paper have been taken
from [2] and generalized to support multi-
dimensional data.

4.1 Dynamic Time Warping

The central means through which we gauge sim-
ilarity between a query and a member of the
database is the dynamic time warping metric
(DTW) introduced in 1994 by Berndt and Clif-
ford [1]. Dynamic time warping is an approach
using dynamic programming for matching time
series data when the overall structure is the
same but the time axis might be stretched or
compressed (Figure 3). For example, given the
continuous, temporal data of the sound of some-
one speaking, DTW can be used to find in-
stances of the same word pronounced by differ-
ent individuals despite some vocalization varia-
tions.

Suppose we have a query time series Q of
length n with dimensions D and a candidate
time series C of length m also with dimensions

D, where

Q = q1,q2, . . . ,qi, . . . ,qn (1)
C = c1, c2, . . . , cj, . . . , cm (2)

and
qi = q1i , q

2
i , . . . , q

D
i

cj = c1j , c
2
j , . . . , c

D
j

We can construct an n-by-m matrix E where
the (ith, jth) element of the matrix, e(i,j), rep-
resents the euclidean distance between the two
time points qi and cj :

e(i,j) =

√√√√ D∑
d=1

(qd
i − cdj)2

We are interested in finding the cost of the
best alignment between Q and C, which is rep-
resented by the warping path with the mini-
mal distance between each pair of aligned time
points. In general, the warping path may be
subject to several constraints [2]. For our pur-
poses, we constrained the path to be monoton-
ically spaced in time and restricted allowable
steps in the path to adjacent cells. We do not
actually need to know what the warping path
is; we are only interested in finding the cost of
the minimal alignment. Dynamic Time Warp-
ing finds the minimal cost alignment between
two time series. At each point the cumulative
distance recurrence γ(i, j) is found from the dis-
tance cost from the current cell’s alignment and

3

Figure 3: An illustration of the optimal DTW matching between a query (blue) and a candidate
(red) timeseries.

the minimum of the cumulative distances from
possible previous alignments:

γ(i, j) = e(i, j)+

min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)} (3)

The minimal warping cost returned from the al-
gorithm is then γ(n,m).

4.2 R-Trees for Time Series

To store our time series in a database for efficient
retrieval we will use a specialized R-tree. R-trees
create hierarchical splits in the data space. Each
node in the tree stores a minimum bounding
rectangle (MBR) that spatially bounds the ob-
jects indexed in the leaves of that node. MBRs
may overlap; therefore, a search for a time se-
ries may involve looking through more than one
path in the tree.

In general, MBRs are storing static objects
in a space. However, we are indexing move-
ments over time. It does not make sense to store
the highest and lowest boundaries of the entire
movement, since that disregards the contour of
the movements over time. Also, the time series

may be of variable length so we cannot create
just the MBRs to store a boundary for each rel-
ative time point. Therefore, for our purposes,
we needed to adjust the structure of the mini-
mum bounding rectangles. We assume all time
series could be approximated into N segments
of equal size1. The new MBR structure then
stores N bounding rectangles to bound each seg-
ment. While this approach with a fixed number
of segments will work when indexing time series
of variable lengths, it may not be as efficient in
this case. For our experiments, we assumed a
static size for each time series in the database.

When searching the index for a particular
query time series, or inserting a new time se-
ries into the index, we calculate piecewise upper
and lower bounds for the query. So for a query q
with length n, the upper and lower bound series
are n-by-D matrices U and L defined by:

Ui,d = max(qd
i−r : qd

i+r) (4)

Li,d = min(qd
i−r : qd

i+r) (5)

where r is the Sakoe-Chiba Band[6]. Then, the
piecewise bounding series are defined by N -by-

1If the size of the query n is not divisible by N, the last segment will be a little larger to include the leftover time
points.

4

Figure 4: The optimal path through the value matrix used for assigning matches to points in the
query and candidate timeseries from Fig 3.

D matrices:

Ûi,d = max
(
U(n

N
i,d), . . . , U(n

N
(i+1),d)

)
(6)

L̂i,d = max
(
L(n

N
i,d), . . . , L(n

N
(i+1),d)

)
(7)

5 The System

Our database stores time series split across a
set of tables, each with its own R-tree index
structure. The R-tree has a specified number
of segments N that the data is split into for
processing. The inner nodes of the R-tree con-
tain the specialized MBRs as described in sec-
tion 4.2. The leaf nodes store Piecewise Con-
stant Approximations of the time series they in-
dex. For a given time series C of length n with
dimensions d, the piecewise approximation is a
N -by-d matrix where:

c̄i,d =
N

n

n
N

i∑
j= n

N
(i−1)

cdj (8)

The owner of the data specifies the dimension
splits, if any. In the case of the hand move-
ments, a wise split might be to split the time
series data by finger, so that each finger move-
ment gets its own table and index. Full move-
ment data can be recreated by performing a join

on all of the joint tables on a key that represents
the full movement’s id (perhaps a combination
of participant id and time taken).

5.1 Search

We used the search algorithm from Keogh
2005[2] to find the K-Nearest Neighbors to a
database query. This involves a top-down search
through the index R-tree. At each node, the
lower-bound distance between the query and
each of the node’s children is calcuated and
added to a priority queue. Finding the optimal
matching using DTW requires a costly minimal
warping path computation through a distance
matrix which would not be feasible to use as
a comparison metric in an index of time series
(Figure 4). Therefore, lower-bounding metrics
are required to simplify the comparison calcu-
lations used during indexing while still ensur-
ing that the proper time series in the index are
found.

To this end, we utilized two lower-bounding
metrics for DTW presented in Keogh and
Ratanamahatana 2005: a lower-bounding met-
ric between a time series query and an R-tree
node’s bounding box, and a lower-bounding
metric between a time series query and a

5

piecewise-approximation of one of the time se-
ries in the database. If the node’s children
are other inner nodes, the MINDIST lower-
bounding metric is used. MINDIST measures
the distance outside the query’s upper and lower
bounds that the minimum bounding rectangle
falls:

MINDIST (Q, R) =√√√√√ N∑
i=1

n

N

D∑
d=1

(li,d − Ûi,d)2 if li,d > Ûi,d

(hi,d − L̂i,d)2 if hi,d < L̂i,d

0 otherwise

(9)

If the node’s children are leaves, LB PAA is
used. LB PAA is a tighter lower bound on
the DTW distance between two sequences than
MINDIST. It compares the query’s upper and
lower bounds to a piecewise approximation of
the potential match. LB PAA measures the
distance outside the query’s upper and lower
bounds that the other sequence falls:

LB PAA(Q, C̄) =√√√√√ N∑
i=1

n

N

D∑
d=1

(c̄i,d − Ûi,d)2 if c̄i,d > Ûi,d

(c̄i,d − L̂i,d)2 if c̄i,d < L̂i,d

0 otherwise

(10)

The search is directed by the path of least
cost. The top of the priority queue is the node
searched next. If the top of the queue is a leaf,
the full time series indexed by that leaf is re-
trieved and DTW between the query and the
retrieved time series is calculated. The time se-
ries id and result is added to a list of poten-
tial results. If and when a time series in the
list of potential results has a DTW score that
is smaller than the lower bound distance of the
queue’s top element, the time series is added
to the set of actual results. The search process
continues until K results have been found.

The top K matches from each table are re-
turned and the full time series of each of the
total set of matches is found based on id num-
bers. If the same id number is returned more
than once, the full time series for that id is only

checked once; therefore, if the number of dimen-
sions has been split among 5 tables, there will
be at most 5K full sequences that are considered
as possible matches. DTW is performed on each
of these potential matches and the K sequences
with the best scores are given as the top matches
overall.

For queries on partial sets of dimensions,
only the tables that contain the specified dimen-
sions are queried. In our present system model,
if a user specifies a particular dimension, she
must also specify all of the other dimensions that
are stored in that same table. For example, for
hand movement data where each finger gets its
own table, a user cannot query on only one joint
sensor; they would have to specify at least both
joint sensors for that particular finger. In future
work, this constraint may be relaxed.

5.2 Results

5.2.1 Synthetic Experiment

In order to validate the correctness of the meth-
ods that underlie our query matching engine, we
have created a dataset composed of appended
fixed length segments that are randomly mixed.
Each segment is one of 8 variants of a Gaus-
sian normal curve. A collection of concatenated
segments is a series, and we create multiple in-
dependent series to simulate the dimensionality
of the joints in the hand. Once we have synthe-
sized the dataset, we can run queries and com-
pare the output of our matching algorithm to
the ground truth. Since we can structure the
synthetic dataset to have repeating segments
amidst the randomly generated data, we im-
posed guarantees on the nature of the expected
results. We successfully tested our solution with
the controlled data before moving to the more
complex finger joint angle time-series.

5.2.2 Hand Database

To evaluate the performance of our system we
ran 2000 randomized queries and recorded the
top 9 matches from the full joint dimensions
{1,2,3,4,5,6,7,8,9,10} and compared these to the

6

Figure 5: Animation frames (left-to-right ordering) from a highly articulated object manipulation
task.

results of the same queries run on groups com-
posed of individual fingers {1,2}, {3,4}, {5,6},
{7,8}, {9,10}. We look at the top 9 non-trivial
matches since we return the top 10 results and
our query, which is in the database, always
matches itself. Based on our analysis, it is not
possible to compute traditional precision scores
since correct results are returned in all cases.
However we can compute recall scores if we con-
sider the overlap between the full joint dimen-
sions results and those of the individuated fin-
gers. We found that an average of 4.395 (out
of 9) matches were shared between the full and
finger group queries, and that 72.65 percent of
the time the top result in the full hand search
was retained in the split finger outputs.

On an 8-core Intel Xeon 2.66GHz machine,
the full joint test took 3.75 hours to run 2000
queries, and the split joint test took 6.5 hours.
This averages out to 6.75 seconds to run one
query over one R-tree for the whole hand, and
11.7 seconds per query when split into five
R-trees, one per finger. The split query is
slower because each R-tree is queried sequen-
tially, when they could be made to run in par-
allel. We suspect there are other optimizations
to our code to speed up our method as well.

To further validate our results we developed
a python script that manipulates the parame-
ters of a 3D rendered hand model in Poser Pro
to automate the creation of a hand animation
with the joint data of a given movement chunk.

In most cases the query animations closely re-
sembled the best match animation and it was
very interesting to observe the qualitatively dif-
ferent matches that we could produce when we
changed the structure of the joint groups that
we searched over. A few example frames from a
knife twirl are shown in Figure 5.

6 Future Work

One big slowdown in our methods came from
the fact that during a search of the R-trees,
usually nearly all of the tree was searched to
find the best matches. This stems from the fact
that R-trees allow nodes’ bounding rectangles
to overlap. With noisy human hand movement
data, they are bound to overlap a lot during a
straightforward insertion into the tree. Other R-
tree variants exist that ameliorate this problem,
such as the R*-tree which uses specialized inser-
tion methods that reduce the overlap of bound-
ing rectangles. This would improve performance
during search, but would come at a cost to the
set up of the index trees. The tradeoffs need to
be investigated further to find the optimal type
of R-tree to use.

An additional speedup could be achieved
though parallelized processing of the table
queries. The user selected groups provide di-
mensional splits that are natural candidates
for parallelization schemes as the processing of
the reduced dimensional sets can easily be dis-

7

tributed amongst shared-nothing cluster nodes
which communicate only to convey the results
remaining after their indexes have been tra-
versed.

Our work promises to be especially useful to
the motor control community which is just be-
ginning to develop intuitions about the structure
of the control policies that the brain computes
in order to perform complex object manipula-
tions. This database can be leveraged to syn-
thesize learner systems which treat the human
as an expert and try to reverse engineer a value
function that would inform optimal choice of ac-
tions in various tasks.

In conclusion we believe that although our
results focused on human hand movements, the
methods we propose are general and should be
applicable to a range of datasets.

References

[1] Donald J. Berndt and James Clifford. Us-
ing dynamic time warping to find patterns in
time series. In AAAI Workshop on Knowl-
edge Discovery in Databases, 1994.

[2] Eamonn Keogh. Exact indexing of dynamic
time warping. In KIS, 2005.

[3] Eamonn Keogh, Themistoklis Palpanas,
Victor B. Zordan, Dimitrios Gunopulos, and

Marc Cardle. Indexing large human-motion
databases. In VLDB ’04: Proceedings of the
Thirtieth international conference on Very
large data bases, pages 780–791. VLDB En-
dowment, 2004.

[4] Eamonn J. Keogh and Michael J. Pazzani.
A simple dimensionality reduction technique
for fast similarity search in large time series
databases. In PADKK ’00: Proceedings of
the 4th Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, Current
Issues and New Applications, pages 122–133,
London, UK, 2000. Springer-Verlag.

[5] Franky Kin-Pong Chan, Ada Wai-chee Fu,
and Clement Yu. Haar wavelets for effi-
cient similarity search of time-series: With
and without time warping. IEEE Trans. on
Knowl. and Data Eng., 15(3):686–705, 2003.

[6] Hiroaki Sakoe. Dynamic programming algo-
rithm optimization for spoken word recog-
nition. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 26:43–49,
1978.

[7] Michail Vlachos, Marios Hadjieleftheriou,
Dimitrios Gunopulos, and Eamonn Keogh.
Indexing multidimensional time-series. The
VLDB Journal, 15(1):1–20, 2006.

8

